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1 Introduction: Goals and Scope

Goals of the workshop:

• To provide a practical and technical overview of volatility trading strategies:

• Focus on systematic and rule-based trading strategies that can be marketed as an invest-able index or
a proprietary strategy:

1. Delta-hedged strategies for capturing the volatility and skew risk-premiums

2. Without delta-hedge: CBOE and customized options buy-write indices

• Overview important implementation aspects:

1. Measuring the historic realized volatility

2. Forecasting the expected realized volatility

3. Measuring and forecasting implied and realized skew

4. Computing option delta consistently with empirical dynamics

5. Analysis of transaction costs

6. Managing the tail-risk of short volatility strategies
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Target Know-how:

• Investment community and asset allocators are increasingly focusing on factor-based approaches for asset
allocation

• Volatility-related strategies are typically identified as alternative risk-premium strategies which enjoy growing
interest from institutional and high net worth clients

• Increased offering of volatility based strategies:

1. CBOE expanded its toolkit of buy-write indices to about 25 (these indices are not invest-able yet)

2. Sell-side investment banks are offering standardizes and customized trading strategies for clients

• The workshop intends to provide:

1. The insight for the design and back-testing of systematic volatility strategies

2. Understanding of risk-reward trade-off and potential pitfalls of volatility strategies

• One is the key topics is how to measure and forecast the realized volatility: a proper method can substantially
improve the performance of volatility strategies
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Key characteristics of volatility strategies discussed in this workshop:

• The focus is on systematic strategies managed quantitatively with a minimum of discretionary decisions

• Trading frequency: medium to low with typical re-balancing of one month

• Cash management:

1. Buy-write indices: cash funded, the size of position is set so that the fund value is sufficient to cover
exercisers of traded positions

2. Delta-hedged strategies: leverage is possible, delta risk may be unlimited

• Trading universe:

1. Options on major stock indices and bonds using futures options

2. Options on major ETFs and large cap stocks

• Key trade-offs:

1. Liquidity of the underlying asset (limited apart from major ETFs: SPY, QQQ, IWM and sector ETFs,
and some large cap stocks)

2. Hedging delta risk versus transaction costs which a very important trade-off: take more delta risk and
save on transaction costs or take less delta risk and spend on hedging

Remarks for the workshop presentation

• The workshop notes are sometimes technical and reasonably self-contained so they can used as a reference in
your own work

• During the workshop, the emphasis will be on illustrations and discussion of key concept

• A lot of the presented material is both current and ”perpetual” work-in-progress

• Your feedback and comments is welcome during the workshop and afterwords
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2 Realized Volatility

2.1 Return Calculations

We work with the time series data of asset prices observed at the end of a period:

[S0, S1, S2, .., St, .., ST ] (2.1)

where t is an integer indicating the t-th element of the sample, t = 0, .., T , T + 1 is the size of the sample.

Typically, we use daily observations

Given the sample of T + 1 prices corresponding to dates (d0, d1, ..., , dT ), we compute the one-period return at time
t as follows:

• Absolute return as the spread:

r
(s)
t = St − St−1 , t = 1, ..., T (2.2)

• Logarithmic return:

r
(l)
t = ln

(
St
St−1

)
, t = 1, ..., T (2.3)

• Arithmetic return:

r
(a)
t =

St
St−1

− 1 , t = 1, ..., T (2.4)
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Special Considerations:

• Portfolio returns: when using the arithmetic returns, the portfolio return equals the weighted sum of returns
on its components

• Heavy tailed distributions: the exponential moments (necessary for the existence of finite moments of log-
returns) are not defined (infinite) for heavy-tailed t-distribution

• My convention is to use arithmetic returns for volatility estimations
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2.1.1 Dividends

When a stock or an ETF go ex-dividend at the beginning of period tk, the arithmetic return is computed by:

r
(a)
tk

=
Stk +Dtk

Stk−1
− 1 (2.5)

The logarithmic and absolute returns are computed by analogy

Special Considerations:

1. Dividends are an important component of total returns

2. All trading and investment strategies should account for dividends and specify whether they are

• total return strategies with accrued dividends being re-invested

• dividend distribution strategies with accrued dividends being distributed
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2.1.2 Stock Splits

It is not uncommon that the shares of stocks and ETFs have splits

Especially so in pre crisis of 2008 - the emerging market ETF (EEM) had two 3 : 1 splits in 2005 and early 2008

Apple had 7 : 1 split in 2014

The stock split with the ratio of x : y (most common is 2 : 1) means that the holder gets x new shares for y existing
shares

When the split is applied at the beginning of period ts, the return is computed by considering the change in the
total position

at the end of time ts: xSts vs at the end of time ts−1 ySts−1 (2.6)

The arithmetic return is computed by:

r
(a)
ts =

xSts
ySts−1

− 1 (2.7)

The logarithmic and absolute returns are computed by analogy.

To deal with splits we can apply the following options

• Create event handler which is provided with split dates and which applies equation (2.7) for return computation:
this is more demanding computationally

• Adjust time series post the split date dts by dividing by the ratio x : y

Special Considerations:

• Data providers also publish adjusted closing prices taking into account dividends and splits.
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• Adjusted prices are not aligned with the intra-day prices and are not actual prices for trade executions in the
back-test.

• The only possible use of adjusted prices is to verify the internal computations for return computations which
accounts for all possible corporate actions.

• Some data providers report dividends on post-split share count (for an example, $1 dividend paid pre-2 : 1
split is reported as $0.5)

• The best is to handle stock splits and spin-offs case by case in your internal database
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2.2 Sample partitioning

For back-testing of trading strategies and analysis of historical data, we need to partition the existing time series
data into sub-samples:

1. Specify dates {dr} when the strategy is rebalanced

2. Specify period prior to each date dr when input parameters and signals (volatilities) for this strategy are
computed

3. Incorporate Markovian property for the trading strategy by using only the information up to date dr to evaluate
inputs for the strategy

Given the time series of prices with the sample of size T , we partition the sample into N sub-samples as follows:

[S0, S1, S2, ..., ST ] −→[
S0, S1, ...STK1

][
STK1

, STK1
+1, ...STK2

]
...[
STKN−1

, STKN−1
+1, ...STKN

]
(2.8)

Here:

• TKn , n = 1..N is the strategy re-balancing times, TKn−1 is the start time of time series for estimation of the
inputs for re-balancing at time TKn

• The strategy is using data from the previous re-balancing TKn−1 up to current re-balancing at TKn

• The strategy may use longer or shorter periods for estimation of the inputs so that the start date of the
estimation period TKn−1 needs to be adjusted accordingly
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Table 1: Example of Start and End date for strategy with re-balancing at every 3rd Friday of the month and with
generation of signal using past month of data

Start End
17-Jul-15 21-Aug-15

21-Aug-15 18-Sep-15
18-Sep-15 16-Oct-15
16-Oct-15 20-Nov-15
20-Nov-15 18-Dec-15
18-Dec-15 15-Jan-16
15-Jan-16 19-Feb-16
19-Feb-16 18-Mar-16

2.3 Realized Volatility

Given sample of time series of end of day stock prices

[S0, S1, S2, ..., ST ] (2.9)

and dividends, we obtain the time series of price returns:

[r1, r2, ..., rT ] (2.10)

Fixing the current date by t, we form the sample of prior observations up to time t− T by:

[rt−T , ..., rt−2, rt−1] (2.11)

In this interpretation:
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• rt−1 is the most recent return for prior day t− 1 observed at the beginning of trading day t

• rt−T is the most distant return

• the sample contains T prior returns.

Simple close-to-close estimator of realized variance :

σ2
t (T ) =

1

T − 1

T∑
k=1

(rt−k − rt(T ))2 (2.12)

where rt(T ) is the average sample return

By convention, σt(T ) and rt(T ) denote the sample estimates of volatility and average return computed using the
returns data at the beginning of period t with the sample containing returns from period t− 1 to t− T

The factor 1
T−1 is the correction with adjustment for the mean

2.3.1 Annualization

The volatility computed using daily returns and normalized as in Eq (2.12) represents the daily volatility of re-
turns

We annualize the volatility by applying the annualization factor:

σ̃2
t (T ) = AF × σ2

t (T ) (2.13)

where AF = 252

Special Considerations:

• High frequency (using minute- or hourly returns) and lower frequency (using weekly or monthly returns)
volatility estimates can be applied
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• It is always robust to report the volatility in the same annualized units to avoid confusion

2.3.2 Volatility vs Variance

It is always more intuitive and clear to report computations in terms of annualized volatilities. It also helps to spot
inaccuracies in data and computations

Reporting in terms of variances or (worst) daily variances is confusing - an example is given in the table

Table 2: Volatility vs Variance
Annualized Volatility 5% 10% 15%
Annualized Variance 0.25% 1.00% 2.25%

Daily Variance 0.0010% 0.0040% 0.0089%
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2.4 Discrete vs Continuous Volatility and Estimation Methods

In the econometric literature, we following concepts are studied:

• Instantaneous variance: the stochastic driver, denoted by V (t), of instantaneous variance of price returns

Var[rt] = V (t)dt (2.14)

• Quadratic Variance: the integrated instantaneous variance

QV (t) =

∫ t

0

V (t′)dt′ (2.15)

• Realized Variance: the discrete approximation of the quadratic variance computed over discrete time grid {tk}

DV (t) =
∑
tk∈[0,t]

r2tk (2.16)

Volatility estimation and forecasting methods:

1. Estimation Methods using Sample State: simple close-to-close estimator, estimators using intra-day
prices:

– Apply the concept of the realized variance using the returns observed in the sample

– Forecasting is based on flat extrapolation of the most recent volatility into the future - no account
for the volatility mean-reversion

2. Estimation Methods using State Inference (GARCH type methods):

– Work with the concept of the instantaneous variance which is inferred using a state equation
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– Apply recursive maximum likelihood method for estimation of model parameters

– Forecasting is based on extrapolation of the most recent volatility into the future accounting for the
volatility mean-reversion

3. Continuous time SV models:

– Work with the concept of the instantaneous variance which can be inferred using a state equation or
proxied using a short-term realized variance

– Apply recursive maximum likelihood method for estimation of model parameters

– Forecasting is based on extrapolation of the most recent volatility into the future accounting for the
volatility mean-reversion
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3 Volatility Estimation using Sample State Methods

These methods assume the price process driven by a diffusion process and provide inference using the discrete
variance

Given the observed sample state of asset prices, they provide an estimate of the volatility

The first two sets of estimators do not account for auto-correlation of volatility

3.1 Close-to-Close Estimator

σ2
t (T ) =

1

T − 1

T∑
k=1

(rt−k − rt(T ))2 (3.1)

where rt(T ) is the average sample return.

3.2 Open-High-Low-Close Estimators

These methods employ intra-day observations and need the time series of daily observations for:

1. open price Ot

2. high price Ht

3. low price Lt

4. close price Ct
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3.2.1 Parkinson estimator

Uses the intra-day high and low prices:

σ2
t (T ) =

1

4 ln(2)

T∑
k=1

(
ln

(
Hk

Lk

))2

(3.2)

3.2.2 Garman-Klass estimator

Extension of Parkinson estimator including opening and closing prices:

σ2
t (T ) =

T∑
k=1

[
1

2

(
ln

(
Hk

Lk

))2

− (2 ln(2)− 1)

(
ln

(
Ck
Ok

))2
]

(3.3)

3.2.3 Rogers-Satchell estimator

No assumption about zero-mean:

σ2
t (T ) =

T∑
k=1

[
ln

(
Hk

Ck

)
ln

(
Hk

Ok

)
+ ln

(
Lk
Ck

)
ln

(
Lk
Ok

)]
(3.4)

3.2.4 Yang-Zhang estimator

Is compatible with the drift and overnight jumps:

σ2
t (T ) = σ2

overnight(T ) + cσ2
open-to-close(T ) + (1− c)σ2

Rogers-Satchell(T ) (3.5)
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where

σ2
overnight(T ) =

T∑
k=1

(
ln

(
Ok

Ck−1

)
− ln

(
Ok

Ck−1

))2

σ2
open-to-close(T ) =

T∑
k=1

(
ln

(
Ck
Ok

)
− ln

(
Ck
Ok

))2

c =
0.34

1.34 + T+1
T−1
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Illustrations: Different Estimators

1) Time series of volatility estimates using monthly sample for S&P500 index ETF (SPY) from 2005 to
2016

Key observations:

• Close-to-Close and Yang-Zhang employ overnight returns and so provide higher estimates of volatility when
the overall level of volatility is high (GFC in late 2008, EU stress in 2010 and 2011)
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2) Empirical kernel density of one-month volatility estimates using monthly sample for S&P500 index ETF
(SPY) from 2005 to 2016

Key observations:

• Parkinson, Garman-Klass, and Rogers-Satchell do not employ overnight returns so their estimates of the
volatility are smaller and less volatility

• For asset allocation programs, Parkinson, Garman-Klass, and Rogers-Satchell provide a more robust way to
estimate the volatility and compute allocation weights which are more stable between re-balancings
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3.3 Specification of Estimation Window

1) Time series of Rogers-Satchell volatility estimates using S&P500 index ETF (SPY) from 2005 to 2016

Key observations:

• Typically, the estimation window is based on total returns observed within daily, weekly, monthly, or quarterly
period

• I strongly recommend to use non-overlapping intervals for volatility estimation: in this case the statistical
estimation errors are uncorrelated and uniform (not prone to heteroscedasticity)

• The estimation window should be related to the frequency of strategy rebalancing: for monthly re-balancing
use monthly observation window, etc
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2) Empirical kernel density Rogers-Satchell volatility estimates based on total returns observed within
daily, weekly, monthly, or quarterly period

Key observations:

• Daily volatility estimate is too dispersed

• Monthly and quarterly volatilities provide sharper estimates
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3.4 Bias Correction

The sample standard deviation is computed by:

σ2
t (T ) =

1

T − 1

T∑
k=1

(rt−k − rt(T ))2 (3.6)

where T − 1 Bessel’s correction to correct for the bias in the estimation of the population variance.

In most of applications we are interested in the estimate of the standard deviation (the volatility) of the population
distribution of the returns. The bias correction depends on the particular distribution.

For normal distribution:

σ̂t(T ) =
1

C(T )

√
σ2
t (T )

C(T ) =

√
2

T − 1

Γ
(
T
2

)
Γ
(
T−1
2

)
= 1− 1

4

1

T
− 7

32

1

T 2
− 19

128

1

T 3
+O

(
T−4

)
where Γ(x) is the gamma function

For weekly estimator with T = 5, C(5) = 0.94, and the correction increases the estimated volatility by factor of
1.06

For non-normal heavy-tailed distributions an approximation (up to O(T−1))

C(T ) =

√
1

T − 3
2
− 1

4
m4

where m4 is the population excess kurtosis. The excess kurtosis may be estimated from data.

Where returns are serially correlated (as for volatility and rates), we need also to adjust for the auto-correlation.
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3.5 Forecasting Volatility

• Given an estimate of the recent volatility, next step is to make a forecast over the next rebalancing/sample
period

• As we observe in figures above, the volatility has mean-reverting features: periods of high volatility are followed
by periods of low volatility and vice versa

• For a robust forecasting, we should incorporate the mean-reversion feature

However, the estimators using the sample state are based on the assumption of independent sample and observations
within the sample

As a result, the estimate of the volatility computed using the data at the beginning of period t is applied to forecast
the volatility at the end of the period t or equivalently at the start of the period t+ 1:

σ̂2
t+1 = σ2

t (T ) (3.7)
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3.6 Volatility Estimators using Exponentially Weighted Moving Averages (EWMA)

Since we observe empirically that the volatility is indeed auto-correlated, now we consider the estimators with the
auto-correlation of the volatility

The estimator using exponentially weighted moving averages (EWMA) incorporates the volatility from the previous
period to estimate and forecast the volatility for the current and future periods

By the convention, the returns are not mean-adjusted

Estimator employing the finite EWMA only uses returns in the sample:

σ2
t (T ) = Λ(T )

[
r2t−1 + λr2t−2 + λ2r2t−3 + ...+ λT−1r2t−T

]
= Λ(T )

T∑
k=1

λk−1r2t−k

Λ(T ) =
1

1 + λ+ λ2 + ...+ λT−1

(3.8)

Estimator employing the infinite EWMA Infinite EWMA uses returns in the sample plus previous volatility:

σ2
t (∞) =

1

1 + λ+ λ2 + ...

[
r2t−1 + λr2t−2 + λ2r2t−3 + ...

]
= (1− λ)

∞∑
k=1

λk−1r2t−k

(3.9)
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Note that:

∞∑
k=1

λk−1r2t−k =
T∑
k=1

λk−1r2t−k +
∞∑

k=T+1

λk−1r2t−k

=
T∑
k=1

λk−1r2t−k + λT
∞∑

k=T+1

λk−T−1r2t−k

=
T∑
k=1

λk−1r2t−k + λT
∞∑
k′=1

λk
′−1r2t−k′−T

=
1

Λ(T )
σ2
t (T ) +

λT

(1− λ)
σ2
t−T (∞)

(3.10)

using k′ = k − T

Thus:

σ2
t (∞) =

(1− λ)

Λ(T )
σ2
t (T ) + λTσ2

t−T (∞) (3.11)

Note that:

(1− λ)

Λ(T )
+ λT = (1− λ)

(
1 + λ+ λ2 + ...+ λT−1

)
+ λT

= 1

(3.12)

Thus, the infinite EWMA is a weighted average of the finite EWMA with window T and the infinite EWMA up to
the period T

For T = 1 we obtain:

σ2
t (∞) = (1− λ)r2t−1 + λσ2

t−1(∞) (3.13)
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using by convention σ2
t (1) = r2t−1

As a result, the infinite EWMA is computed by the recursion starting from the EWMA volatility at the start of the
sample t− T (estimated from prior periods) and then applying the recursion (3.13)

3.6.1 Adjusting for the mean

For robust estimation, we need adjust for the mean return

For the finite EWMA, the mean return rt(T ) is computed as the EWMA mean:

rt(T ) = Λ(T )
[
rt−1 + λrt−2 + λ2rt−3 + ...+ λT−1rt−T

]
= Λ(T )

T∑
k=1

λk−1rt−k
(3.14)

Then the estimate of EWMA volatility is computed as EWMA of the sum of squared deviations from the mean:

σ2
t (T ) = Λ(T )

T∑
k=1

λk−1 (rt−k − rt(T ))2 (3.15)

For the infinite EWMA, we can show similarly to Eq (3.11) for σ2
t (∞) that the infinite EWMA return is the sum of

finite EWMA return:

rt(∞) =
(1− λ)

Λ(T )
rt(T ) + λT rt−T (∞) (3.16)

For practical purposes we can only use returns in the current sample
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3.6.2 Volatility Forecast

At the start of trading period at time t we have the information from time t − 1, Ft−1, which we use to compute
volatility σ2

t+1 for up to the start on the next trading period t+ 1

The key assumption is that conditional on the available information set Ft−1 the time t return is normal

rt | Ft−1 = N
(
0, σ2

t (∞)
)

(3.17)

where N is the PDF of standard normal random variable (it is also possible to use heavy tailed Student t-distribution
etc)

For the infinite EWMA, we apply Eq (3.13):

σ̂2
t+1(∞) = (1− λ)E

[
r2t | Ft−1

]
+ λσ2

t (∞) (3.18)

Applying equation (3.17), we obtain that

E
[
r2t | Ft−1

]
= σ2

t (∞) (3.19)

As a result, the volatility forecast from the EWMA estimator is equal to the most recent estimate

σ̂2
t+1(∞) = σ2

t (∞) (3.20)

and for k-th period:

σ̂2
t+k(∞) = σ2

t (∞) (3.21)
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Key Observations:

• The forecast conditional volatility is flat and equals to the most recent estimate even though the model assume
auto-correlation for the volatility estimate

• Technically, the estimator using EWMA assumes the same type of diffusive Brownian motion-based model for
price returns as the model for the equally weighted variance estimator

• The observations that the volatility estimates are time-varying is because of the exponential weighting of data

For the estimator with finite EWMA, we obtain:

σ̂2
t+1 = Λ(T )

[
E
[
r2t | Ft−1

]
+ λr2t−1 + λ2r2t−2 + ...+ λT−1r2t−T+1

]
= Λ(T )

[
σ2
t (T ) + λr2t−1 + λ2r2t−2 + ...+ λT−1r2t−T+1

] (3.22)

σ̂2
t+2 = Λ(T )

[
E
[
r2t+1 | Ft−1

]
+ λE

[
r2t | Ft−1

]
+ λ2r2t−1 + ...+ λT−1r2t−T+2

]
= Λ(T )

[
σ̂2
t+1 + λσ2

t (T ) + λ2r2t−1 + ...+ λT−1r2t−T+2

] (3.23)

For q < T :

σ̂2
t+q = Λ(T )

[
σ̂2
t+q−1 + λσ̂2

t+q−2 + ...+ λ2r2t−1 + ...+ λT−1r2t−T+q
]

(3.24)

We observe some recursive dependency, but it is very small and the forecast is not much different from the current
estimate
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3.7 Empirical Analysis of Sample State Methods

3.7.1 Estimation of Exponential Smoothing and Mean-reversion

For EWMA estimator, we need to estimate the exponential smoothing parameter λ which measures the degree of
persistence or mean-reversion in the volatility times series:

• Low value of the smoothing parameter λ: the estimate of the volatility is largely impacted by the most recent
returns while the weight of volatility in prior periods is small

• High value of the smoothing parameter λ: the estimate of the volatility is only modestlyy impacted by the
most recent returns while the weight of volatility in prior periods is high
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Key Observations:

1. The value of the exponential smoothing parameter λ depends on the sampling frequency of the volatility: λ is
high for short frequency (daily, weekly), λ is smaller for monthly and quarterly

2. In continuous time SV models, the degree of exponential smoothing is related to the mean-reversion parameter
κ proportional to infinitesimal time change dt (in linear one-factor models)

3. On the one hand, the smoothing parameter λ can be estimated using a discrete GARCH-type model (integrated
GARCH) for the price returns on daily scale, but in this model the time series of the volatilities is inferred
and it is different from the time series of realized volatilities

4. On the other hand, the smoothing parameter λ can be inferred using the estimate of the mean-reversion in a
continuous-time SV model, however in this model, the estimate of the mean-reversion is closely linked to the
volatility-of-volatility parameter

5. From my own practical experience, by making either λ or κ to be free parameters which are estimated in the
process of calibration, we do not improve the explanatory power of an SV model

6. It is robust to estimate either λ or κ beforehand and use this estimated value in other calibrations
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For one factor continuous time SV models the auto-correlation between the observed volatilities:

ρ (Vt, V0) ∝ e−κt (3.25)

We estimate the empirical value of the auto-correlation for N -lags {ρn}, n = 1, ..., N and fit κ using the following
regression:

− ln (ρn) = κ̂× (n× dt) + α̂ , n = 1, ..., N (3.26)

where κ̂ is the estimate for mean-reversion parameter

The value of the estimate depends on the sample window for volatility estimation:

• Daily volatilities exhibit stronger auto-correlation so the smoothing is high

• Weekly and monthly volatilities exhibit weaker auto-correlation so the smoothing is modest

Figure: Auto-correlations for S&P500 index ETF using daily, weekly, and monthly Rogers-Satchell volatilities
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Given the estimated value of mean-reversion parameter κ̂, the smoothing parameter lambda for the volatility estimate
with sample window of N daily observation is computed by:

λn = exp (−κ̂× (n× dt)) (3.27)

Key practical considerations:

• For medium to low frequency trading strategies with weekly and monthly re-balancing, it is recommended to
use the mean-reversion estimated to weekly estimates of volatility

• The estimated values of the mean-reversion are applied to estimate the EWMA parameter λ and are updated
infrequently

• For back-test purposes the data for estimation of the mean-reversion should be prior to the date when a signal
is generated
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3.8 Empirical Tests of Forecasting Power of Sample Space Estimators

To test the predictive power of the volatility forecast for each of the sample space estimators, I design the back-test
as follows:

1. Compute the realized volatility σ̂t(T ) for period t

2. Apply the estimate for time t+ 1: σ̂t(T ) = σ̂t+1(T ) for period t+ 1

3. Compute the actual realized volatility σ̂t+1(T ) for period t+ 1

4. Make the statistical test about the quality of the forecast volatility by apply the following regression model:

σ̂t+1(T ) = α + βσ̂t(T ) + εt+1 (3.28)

Key practical considerations:

• The estimator producing a volatility forecast is indicated by high explanatory power R2, small intercept α and
beta coefficient close to one β ≈ 1.0

• Each volatility estimator is applied to gauge the predictive power for:

1. its own volatility forecast

2. close-to-close volatility

• It is important that volatility is estimated and forecast over non-overlapping intervals so that forecast errors
εt+1 are iid (in theory)

Set-up of the back-test:

• 11+ years of time series data from 1-January-2005 up to 1-April-2016

• 40 ETFs and large caps representing major stock index ETFs, sector ETFs, fixed-income asset class ETFs
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ETFs and stocks for empirical back-test Table 3: Sample
Ticker Underlying Index Ticker Underlying Index

Major Market Indices Sector ETFs
SPY S&P 500 index XLP Staples

QQQ Nasdaq XLU Utilities
VTI Whole US market XLV Health Care

IWM Small Caps XLY Discretionary
IJH Mid Caps XLK Technology

IWF Russell growth XLI Industrials
IWD Russell value XLE Energy
EFA Developed world ex US & Canada XLB Materials

EEM Emegring markets XLF Financials
VGK Europe IYR Real Estate REIT

Large Cap Stocks Fixed Income ETFs
PG Staples SHY 1-3 Year Treasury Bond

T Telco EIE 3-7 Year Treasury Bond
JNJ Health Care IEF 7-10 Year Treasury Bond
PFE Health Care TLT 20+ Year Treasury Bond
JPM Banks TIP Treasury Inflation Protected Bond

XOM Energy MBB Mortgage Bond
GOOGL Tech LQD Investment Grade Corporate Bond

AAPL Tech HYG High Yield Corporate Bond
FB Tech EMB USD Emerging Markets Bond

MSFT Tech AGG U.S. Aggregate Bond
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Design of the back-test and performance measurement

Compute volatility estimates using 4 sample windows:

1. Daily

2. Weekly (every Friday)

3. Monthly (every 3rd Friday of the month)

4. Quarterly (every quarter on 3rd Friday of the month)

For each of 40 assets:

1. Compute 7 time series of the realized volatility for each of the estimators

2. For each estimator apply equation (3.28) to compute the predictive power R2 of each of 7 estimators

3. Rank 7 estimators by their predictive power

4. The predictor in the top place with the highest R2 gets the score of 3 points

5. The predictor in the second place gets the score of 2 points

6. The predictor in the third place gets the score of 1 points

The score points of each estimator for one asset are aggregated for all 40 assets

First, I start by illustrating the methodology for S&P 500 index ETF
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3.8.1 Test for S&P 500 index ETF (SPY)

Daily Estimation and Forecast:

• EWMA provides the best forecast for its own volatility but not for close-to-close volatility

• Estimators employing intra-day information provide reasonable explain for their own volatilities and modest
explain for close-to-close volatility

Table 4: Left: forecast for its own volatility; Right: forecast for close-to-close volatility
R2 α β R2 α β

Close-Close 12% 8.5% 0.09 Close-Close 12% 8.5% 0.09
EWMA (finite) 12% 8.5% 0.09 EWMA (finite) 12% 8.5% 0.09

EWMA 100% 0.0% 1.00 EWMA 16% 4.8% 0.28
OHLC + Close-Open 62% 5.6% 0.52 OHLC + Close-Open 21% 5.9% 0.26

Parkinson 60% 4.7% 0.52 Parkinson 22% 5.5% 0.36
Garman-Klass 65% 4.4% 0.55 Garman-Klass 25% 5.1% 0.39

Rogers-Satchell 60% 5.0% 0.49 Rogers-Satchell 23% 5.6% 0.35
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Weekly Estimation and Forecast:

• EWMA still provides the best forecast for its own volatility but not for close-to-close volatility

• Estimators employing intra-day information provide very good explain for both their own volatilities and for
close-to-close volatility

Table 5: Left: forecast for its own volatility; Right: forecast for close-to-close volatility
R2 α β R2 α β

Close-Close 46% 5.8% 0.48 Close-Close 46% 5.8% 0.48
EWMA (finite) 46% 6.1% 0.45 EWMA (finite) 46% 6.0% 0.46

EWMA 99% 0.5% 0.94 EWMA 57% 2.4% 0.68
OHLC + Close-Open 84% 3.3% 0.74 OHLC + Close-Open 64% 3.0% 0.61

Parkinson 79% 3.4% 0.68 Parkinson 60% 3.2% 0.72
Garman-Klass 83% 3.1% 0.71 Garman-Klass 62% 3.2% 0.72

Rogers-Satchell 82% 3.1% 0.71 Rogers-Satchell 62% 3.4% 0.69

46% 46%

99%

84%
79% 83% 82%

46% 46%

57%
64% 60% 62% 62%

30%

40%

50%

60%

70%

80%

90%

100%

R^2 weekly vol estimation&forecast
Forecast for its own volatility

Forecast for close-to-close volatility

0%

10%

20%

30%

41



Monthly Estimation and Forecast:

• The predictive power of EWMA estimator becomes the worst for both its own volatility and for close-to-close
volatility - the volatility of recent returns becomes more important for the forecast volatility

• Close-to-close estimators has a reasonable explanatory power - the volatility level at medium time scale is
persistent

• Estimators employing intra-day information provide very good and consistent explain

Table 6: Left: forecast for its own volatility; Right: forecast for close-to-close volatility
R2 α β R2 α β

Close-Close 69% 5.1% 0.63 Close-Close 69% 5.1% 0.63
EWMA (finite) 54% 7.3% 0.47 EWMA (finite) 72% 5.4% 0.68

EWMA 57% 7.1% 0.46 EWMA 73% 5.2% 0.65
OHLC + Close-Open 80% 4.4% 0.67 OHLC + Close-Open 76% 3.7% 0.68

Parkinson 78% 4.2% 0.62 Parkinson 78% 2.7% 0.92
Garman-Klass 79% 4.2% 0.63 Garman-Klass 76% 3.7% 0.83

Rogers-Satchell 78% 4.3% 0.62 Rogers-Satchell 74% 4.2% 0.78
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Quarterly Estimation and Forecast:

• As for monthly sampling, the predictive power of EWMA estimator becomes the worst for both its own
volatility and for close-to-close volatility

• Close-to-close estimators has a reasonable explanatory power - the volatility level at medium time scale is
persistent

• Estimators employing intra-day information provide very good and consistent explain

Table 7: Left: forecast for its own volatility; Right: forecast for close-to-close volatility
R2 α β R2 α β

Close-Close 51% 7.8% 0.45 Close-Close 51% 7.8% 0.45
EWMA (finite) 15% 8.3% 0.19 EWMA (finite) 26% 10.8% 0.34

EWMA 15% 8.4% 0.20 EWMA 27% 10.8% 0.38
OHLC + Close-Open 70% 5.8% 0.50 OHLC + Close-Open 58% 7.0% 0.45

Parkinson 71% 5.1% 0.50 Parkinson 54% 7.4% 0.55
Garman-Klass 67% 5.3% 0.50 Garman-Klass 55% 7.4% 0.54

Rogers-Satchell 63% 5.4% 0.50 Rogers-Satchell 57% 7.3% 0.52
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3.8.2 Aggregate Test for 40 assets: total scores

Daily Estimation and Forecast:

• EWMA provides the best forecast for its own volatility but not for close-to-close volatility

• Estimators employing intra-day information provide reasonable explain for their own volatilities and modest
explain for close-to-close volatility

Table 8: Left: forecast for its own volatility; Right: forecast for close-to-close volatility
Scores Median R2 Scores Median R2

Close-Close 0 11% 0 11%
EWMA (finite) 0 11% 0 11%

EWMA 120 100% 3 13%
OHLC + Close-Open 15 55% 29 18%

Parkinson 19 56% 36 19%
Garman-Klass 71 62% 95 21%

Rogers-Satchell 15 56% 77 21%
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Weekly Estimation and Forecast:

• EWMA still provides the best forecast for its own volatility but not for close-to-close volatility

• Estimators employing intra-day information provide very good explain for both their own volatilities and for
close-to-close volatility

Table 9: Left: forecast for its own volatility; Right: forecast for close-to-close volatility
Scores Median R2 Scores Median R2

Close-Close 0 40% 0 40%
EWMA (finite) 0 40% 0 40%

EWMA 120 99% 17 52%
OHLC + Close-Open 21 82% 46 58%

Parkinson 10 79% 45 61%
Garman-Klass 57 83% 73 61%

Rogers-Satchell 32 82% 59 61%
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Monthly Estimation and Forecast:

• The predictive power of EWMA estimator becomes the worst for both its own volatility and for close-to-close
volatility - the volatility of recent returns becomes more important for the forecast volatility

• Close-to-close estimators has a reasonable explanatory power - the volatility level at medium time scale is
persistent

• Estimators employing intra-day information provide very good and consistent explain

Table 10: Left: forecast for its own volatility; Right: forecast for close-to-close volatility
Scores Median R2 Scores Median R2

Close-Close 3 64% 10 64%
EWMA (finite) 0 50% 22 64%

EWMA 7 52% 21 65%
OHLC + Close-Open 48 80% 31 68%

Parkinson 46 78% 59 70%
Garman-Klass 69 79% 49 70%

Rogers-Satchell 67 77% 48 69%
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Quarterly Estimation and Forecast:

• As for monthly sampling, the predictive power of EWMA estimator becomes the worst for both its own
volatility and for close-to-close volatility

• Close-to-close estimators has a reasonable explanatory power - the volatility level at medium time scale is
persistent

• Estimators employing intra-day information provide very good and consistent explain

Table 11: Left: forecast for its own volatility; Right: forecast for close-to-close volatility
Scores Median R2 Scores Median R2

Close-Close 19 52% 51 52%
EWMA (finite) 7 19% 27 34%

EWMA 4 20% 22 33%
OHLC + Close-Open 38 57% 26 52%

Parkinson 68 60% 36 52%
Garman-Klass 65 61% 34 53%

Rogers-Satchell 39 60% 44 52%
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3.9 Conclusions

Estimators of the volatility with sample state methods have the following properties

• The volatility is estimated using the sample of most recent returns

• The length of the estimation sample (daily, weekly, monthly, quarterly) is selected based on the strategy
re-balancing, the sample must be

• The volatility forecast is based on flat extrapolation of the most recent volatility for the future period

• The most serious drawback for forecasting is that these methods do not account for the mean-reverting feature
of the volatility

• Sample state methods employing intra-day price information provide a reasonable estimate and forecast for
the realized volatility:

1. They also perform well for trading strategies employing the realized volatility: volatility-targeting, volatility-
parity allocations

2. When choosing a particular estimator to apply for a trading strategy, the predictive power of the estimator
should be studied separately

• When intra-day price information is not available or the liquidity is low (for example: European ETFs), the
EWMA estimator should be applied

• The forecast is not employing the mean-reverting feature of the volatility

To account for the mean-reversion of the volatility we need to apply estimation methods using state inference
(GARCH type and continuous time SV models)
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4 Volatility Estimation and Forecast using Inference State Meth-

ods

Inference state methods assume a particular dynamics for the discrete instantenous variance of price returns and
incorporate mean-reverting features for volatility forecast

The inference state methods are based on the following model for the discrete returns process:

rt = µ+ εtσt (4.1)

where are iid variables with zero mean and unit variance and pdf f(x)

σ2
t is returns variance driven by a state equation

Conditional on the information Ft, the probability density function (PDF) of returns is normal (or a heavy tailed
t-distribution)

The returns are uncorrelated but not iid

Define the residual return at time t, at = rt − µ:

at = εtσt (4.2)

4.1 ARCH (1) Model

Originally introduced by Engle (1982):

σ2
t = α0 + α1a

2
t−1 (4.3)

α0 > 0 and α1 > 0 so that the variance is positive, and α1 < 1 for the stationarity
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The unconditional variance of at:

Var [at] = E
[
a2t
]
− (E [at])

2

= E
[
a2t
]

(at has zero mean)

= E
[
(εtσt)

2
]

(definition of at)

= E
[
(εt)

2
]
E
[
(σt)

2
]

(independence of εt and at)

= E
[
α0 + α1a

2
t−1
] (

definition of σ2
t

)
= α0 + α1E

[
a2t−1

]
= α0 + α1Var [at−1]

(
E
[
a2t−1

]
= Var [at−1]

)
= α0 + α1Var [at] (stationary of at)

(4.4)

As a result:

Var [at] =
α0

1− α1
(4.5)

ARCH(1) model is equivalent to the autoregressive AR(1) model on the squared residuals a2t

Consider the conditional forecast error between the squared residual and the conditional expectation:

et = a2t − E
[
a2t | Ft−1

]
= a2t − σ2

t

(4.6)

et are uncorrelated zero mean variables.

ARCH(1) model can be presented as:

σ2
t = α0 + α1a

2
t−1 (definition)

a2t − et = α0 + α1a
2
t−1 (Eq (4.6))

a2t = α0 + α1a
2
t−1 + et (AR(1) model with iid noise et )

(4.7)

The ARCH(1) model implies that a large value of return is followed by a higher volatility
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4.2 Generalized Auto-regressive (GARCH) Model

Bollerslev (1986) developed an extension of ARCH(1) model:

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1 (4.8)

with α0 > 0, α1 > 0, β1 > 0 and α1 + β1 < 1

The one step forecast of the variance is a mixture if last period forecast and squared return

The model inferred the state of the volatility given past returns and model parameters

Model parameters are estimated using the maximum likelihood methods

Figure: 1-day Garch volatility for S&P 500 index
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GARCH(1,1) model is equivalent to ARMA(1,1) model for squared residuals:

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1 (definition)

a2t − et = α0 + α1a
2
t−1 + β1(a

2
t−1 − et−1) (Eq (4.6))

a2t = α0 + (α1 + β1)a
2
t−1 + et + β1et−1 (ARMA(1,1) model with iid noise et )

(4.9)

The unconditional variance of at:

Var [at] = E
[
a2t
]
− (E [at])

2

= E
[
a2t
]

(at has zero mean)

= E
[
(εtσt)

2
]

(definition of at)

= E
[
(εt)

2
]
E
[
(σt)

2
]

(independence of εt and at)

= E
[
α0 + α1a

2
t−1 + β1σ

2
t−1
] (

definition of σ2
t

)
= α0 + α1E

[
a2t−1

]
+ β1E

[
σ2
t−1
]

= α0 + α1E
[
a2t−1

]
+ β1σ

2
t−1

(
σ2
t−1 is measurable

)
= α0 + (α1 + β1)E

[
a2t−1

] (
σ2
t−1 = E

[
a2t−1

] )
= α0 + (α1 + β1)Var [at−1]

(
E
[
a2t−1

]
= Var [at−1]

)
= α0 + (α1 + β1)Var [at] (stationary of at)

(4.10)

As a result:

E
[
σ2
]

= Var [at] =
α0

1− α1 − β1
(4.11)

where E [σ2] is the unconditional (long-run) variance of returns.

Garch model (4.8) can be presented as:

σ2
t = (1− α1 − β1)E

[
σ2
]

+ α1a
2
t−1 + β1σ

2
t−1 (4.12)
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4.3 Volatility Forecast

One-step forecast under the GARCH model:

σ̂2
t+1 = E

[
σ2
t+1 | Ft−1

]
= E

[
α0 + α1a

2
t + β1σ

2
t | Ft−1

]
= α0 + α1E

[
a2t | Ft−1

]
+ β1σ

2
t

= α0 + α1σ
2
t + β1σ

2
t

= α0 + (α1 + β1)σ
2
t

= E
[
σ2
]

(1− α1 − β1) + (α1 + β1)σ
2
t

= E
[
σ2
]

+ (α1 + β1)
(
σ2
t − E

[
σ2
])

(4.13)

Volatility forecast incorporates the long-term variance and its current value

Two-step forecast:

σ̂2
t+2 = E

[
σ2
t+2 | Ft−1

]
= E

[
α0 + α1a

2
t+1 + β1σ

2
t+1 | Ft−1

]
= α0 + α1E

[
a2t+1 | Ft−1

]
+ β1σ̂

2
t+1

= α0 + α1σ̂
2
t+1 + β1σ̂

2
t+1

= α0 + (α1 + β1) σ̂
2
t+1

= E
[
σ2
]

(1− α1 − β1) + (α1 + β1) σ̂
2
t+1

= E
[
σ2
]

+ (α1 + β1)
(
σ̂2
t+1 − E

[
σ2
])

= E
[
σ2
]

+ (α1 + β1)
2 (σ2

t − E
[
σ2
])

(4.14)
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k-step forecast:

σ̂2
t+k = E

[
σ2
t+k | Ft−1

]
= E

[
α0 + α1a

2
t+k−1 + β1σ

2
t+k−1 | Ft−1

]
= α0 + α1E

[
a2t+k−1 | Ft−1

]
+ β1σ̂

2
t+k−1

= α0 + (α1 + β1) σ̂
2
t+k−1

= E
[
σ2
]

+ (α1 + β1)
k (σ2

t − E
[
σ2
])

(4.15)

Typically, the estimated GARCH model implies that volatility reverts too fast to its mean level

See the figure above for one-month volatility forecast: the one-month forecast is almost flat at all times
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4.4 Empirical Tests of Forecasting Power of Inference Space Estimators

To test the predictive power of the volatility forecast for GARCH(1,1), I design the back-test as follows:

• Consider three estimation windows: weekly, monthly, and quarterly

• At the end of estimation window, the parameters of the GARCH model are re-calibrated and the forecast is
computed for the next period

• The volatility for the next period is computed using 7 estimators

• Evaluate the GARCH forecated volatility against the actual volatility computed using 7 estimators.

• Make the statistical test about the quality of the forecast volatility by appling the following regression model:

σ̂actual
t+1 (T ) = α + βσ̂GARCHt (T ) + εt+1 (4.16)

• Use the same data set of 40 assets with 14+ years of time series data from 1-January-2002 (the first 3 years
are used for ”warm-up” of the calibration) up to 1-April-2016

• Use the same scoring methodology for volatility estimator with the most close forecast to the GARCH model

• Aggregate results for weekly, monthly and quarterly forecast
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Total scores of GARCH forecasting power:

• Garch forecast for weekly is the most consistent with EWMA volatility: both estimators are very close to each
other in their nature

• For monthly and quarterly forecasts, the GARCH forecasts well the volatility from estimators employing the
intra-day data

Weekly Monthly Quarterly
Close-Close 0 21 37

EWMA (finite) 0 1 9
EWMA 120 9 9

OHLC + Close-Open 48 74 50
Parkinson 7 29 43

Garman-Klass 36 57 49
Rogers-Satchell 29 49 43
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Median R2 of GARCH forecasting power

• The GARCH has relatively strong explanatory power for weekly and monthly realized volatilities

• The forecast power for longer quarterly periods is rather weak

Weekly Monthly Quarterly
Close-Close 46% 56% 34%

EWMA (finite) 46% 42% 16%
EWMA 91% 46% 16%

OHLC + Close-Open 66% 63% 35%
Parkinson 62% 61% 35%

Garman-Klass 66% 62% 35%
Rogers-Satchell 65% 62% 34%
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4.5 Conclusions

• Inference state models and GARCH incorporate the mean level of the volatility for forecasting, however the
forecast volatility is relatively flat

• Model estimation and implementation are relatively straight forward

• My experience with these type of models is mixed:

– I believe they offer value for portfolio allocation problem when re-balancing frequency is low (monthly,
quarterly)

– They can be applied to model the intra-day seasonality and make short-term (less than a day) volatility
forecast using high frequency data

• However, these models are rather limited for trading in implied volatilities:

– The do not account (or weakly) for the leverage between changes in assets price and its volatility

– They have econometric flavor with little to none interpretation in terms of the implied volatility surface
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5 Volatility Estimation and Forecast using Continuous-Time Stochas-

tic Volatility Models

For trading implied and realized volatilities the model needs to account for empirical features:

1. Negative leverage between changes in the implied and realized volatilities and price returns

2. Mean-reverting feature of implied and realized volatilities

3. Spread between implied and realized volatilities

From modeling point of view:

1. Consistency with empirical data

2. Intuition behind model parameters and their interpretation
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5.1 Beta Stochastic Volatility Model

Why do we need a factor model?

In general, all quant models are applied as factor-based models:

1. For risk computations, we need to project how the changes in primary risk driver, the asset price and delta,
translate into secondary driver, the implied volatility and vega

2. For trading strategies we need to explain changes in realized P&L vs changes in risk factors (implied vol vs
realized vol)

Given a factor model, we can imply correlations between its factors

But given correlations alone, we cannot specify a factor model

Any dynamic factor model represented in terms of correlation matrix is mis-specified

I present the factor model for volatility dynamics based on my work with Piotr Karasinski (Sepp-Karasinski (2012)):
the beta stochastic volatility model

I start by presenting some empirical observations to develop the intuition behind the beta stochastic vol model
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The distribution of realized volatility is close to log-normal

The distribution for the volatility is important for stationary model with time-independent parameters

The stationary distribution is typically classified using the scaling of the volatility-of-volatility:

• normal model: the volatility-of-volatility is independent from the level of the volatility

• log-normal model: the volatility-of-volatility is proportional to the level of the volatility

• CEV-type model: the volatility-of-volatility is proportional to the power of the volatility

For a simple empirical check for implied volatilities: compute the empirical frequency of one-month implied
at-the-money (ATM) volatility proxied by the VIX index for last 20 years

Daily observations normalized to have zero mean and unit variance

Left figure: empirical frequency of the VIX: it is definitely not normal

Right figure: frequency of the logarithm of the VIX: it is close to the normal density (especially the right tail)
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The distribution of implied volatility is also close to log-normal

For a simple empirical check for realized volatilities: compute one-month realized volatility of daily returns on
the S&P 500 index for each month over non-overlapping periods for last 60 years from 1954

Below is the empirical frequency of normalized historical volatility

Left figure: frequency of realized vol - it is definitely not normal

Right figure: frequency of the logarithm of realized vol - again it does look like the normal density (especially for
the right tail)
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Beta SV model is a factor model for volatility employing the regression model for changes in volatility
(realized or implied) σ(tn) predicted by returns in price S(tn):

σ(tn)− σ(tn−1) = β

[
S(tn)− S(tn−1)

S(tn−1)

]
+ σ(tn−1)εn (5.1)

iid normal residuals εn are scaled by the level of volatility σ(tn−1) due to log-normality

The regression has a very strong explanatory power explaining up to 80% of variations in volatility

Volatility beta β is negative around −1.0

Interpretation of the volatility beta β: expected change in ATM vol predicted by price return: for vol beta of
−1.0 and price-return of −2.0%: expected change in vol = −1.0× (−2%) = 2%

Left figure: scatter plot of daily changes in the VIX vs returns on S&P 500 for past 14 years

Right: time series of empirical residuals εn of regression model (5.1):

• Residual volatility does not exhibit any systemic patterns

• Regression model is stable across different estimation periods
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More evidence on log-normal dynamics of volatility: independence of regression parameters on level
of ATM volatility

Estimate empirically the elasticity α of volatility by:

1. Computing the volatility beta and residual volatility-of-volatility for each month using daily returns within
this month

2. Test if the logarithm of these variables depends on the log of the VIX in that month using regression model

Left figure: test β̂(V ) = βV α by regression model: ln
∣∣∣β̂(V )

∣∣∣ = α lnV + c

Right: test ε̂(V ) = εV 1+α by regression model: ln |ε̂(V )| = (1 + α) lnV + c

The estimated value of elasticity α is small and statistically insignificant

Indeed the realized volatility is close to log-normal
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Beta stochastic volatility model (Karasinski-Sepp 2012): is obtained by summarizing our empirical
findings for dynamics of asset price St and volatility σt:

dSt = σtStdW
(0)
t

dσt = β
dSt
St

+ εσtdW
(1)
t + κ(θ − σt)dt

(5.2)

σt is either returns volatility or short-term ATM implied volatility

W
(0)
t and W

(1)
t are independent Brownian motions

β is volatility beta - sensitivity of volatility to changes in price

ε is residual volatility-of-volatility - standard deviation of residual changes in vol

Mean-reversion rate κ and volatility mean rate θ are incorporated for the mean-reverting feature and the stationarity
of volatility

We arrived to beta SV model (5.2) only by looking at empirical data for realized&implied volatilities and using
factor model for the volatility dynamics

Next we consider the econometric estimation of model parameters
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5.2 Econometric Estimation

The instantaneous volatility of price returns is not observable directly

To estimate the model parameters for the volatility of price returns, the econometric literature provides the meth-
ods:

1. Inference type of methods where the state of the volatility dynamics is inferred using some type of Bayesian
or filtering approach: it is relatively computationally expensive

2. Maximum likelihood estimation using probability density function for price returns

Instead, I apply a regression based model

• Compute the time series of the realized volatility using an estimator employing intra-day price data

• The realized volatility is estimated using weekly, monthly or quarterly sampling

• Model parameters are calibrated using the time series of the realized volatility

I apply Euler discretization of the dynamics (5.2) to model change in volatility given price return as follows:

σn − σn−1 = (θ − σn−1)
(
1− e−κdtn

)
+ βxn + onσn−1ζn (5.3)

where σn denotes volatility observed at the estimation times

dtn, dtn = tn − tn−1, is time between estimation

ζn are iid normals

xn is realized price return for period tn: xn = S(tn)
S(tn−1)

− 1

on is the integrated volatility of volatility defined by:

on = ε

√
1

2κ
(1− e−2κdtn)
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Using Eq (5.3), we introduce the normalized variable dn:

dn =
σn − σn−1 − (θ − σn−1)

(
1− e−κdtn

)
− βxn

onσn−1
(5.4)

The logarithm of the likelihood function is given by:

L(Ω;x, v) =
1

N

N∑
n=1

ln(Ω;xn, σn, σn−1)

ln(Ω;xn, vn, vn−1) = −1

2
(dn)2 − ln (onσn−1)− ln (2π)

(5.5)

where Ω is the set of estimation parameters: Ω = {β, ε, κ, θ} with estimates are obtained by maximizing the value
of ML function (5.5)

Calibration of the mean-reversion parameter κ:

• As I explained when discussing the auto-correlation of realized volatility and smoothing parameter for EWMA
model, letting the mean-reversion parameter κ to be a free parameter does not add to the explanatory power
of the model

• Fitted values of the mean-reversion parameter κ and residual volatility ε are dependent on each other

• The mean-reversion parameter κ is estimated beforehand using the empirical auto-correlations of the volatility
and set fixed to ML problem (5.5)

The proposed method does account for jumps in returns because we assume that price returns, {xn}, are sampled
from empirical distribution and we make no assumption on distribution of {xn}

Instead, using Eq (5.3), we make assumption on normality of the distribution of changes in volatility, σn − σn−1,
conditional on observed log-returns and previous volatility
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5.3 Empirical Tests of Forecasting Power of Beta SV model

To test the predictive power of the volatility forecast for SV beta model, I design the back-test similarly to the
GARCH model as follows:

• Consider three estimation windows: weekly, monthly, and quarterly

• At the end of estimation window, the parameters of the model are re-calibrated using past 3 years of data and
volatility time series computed using 7 estimators

• The forecast for e estimators is computed for the next period

• Evaluate the forecast volatility against the actual volatility computed using 7 estimators.

• Make the statistical test about the quality of the forecast volatility by applying the following regression model:

σ̂actual
t+1 (T ) = α + βσ̂SV betat (T ) + εt+1

• Use the same data set of 40 assets with 14+ years of time series data from 1-January-2002 (the first 3 years
are used for ”warm-up” of the calibration) up to 1-April-2016

• Use the same scoring methodology for volatility estimator with the most close forecast to the beta SV model

• Aggregate results for weekly, monthly and quarterly forecast
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Total scores of SV beta forecasting power:

• Model forecast for weekly volatilities is the most consistent with EWMA volatility

• For monthly and quarterly forecasts, SV beta produces consistent forecast for estimators employing the intra-
day data

Weekly Monthly Quarterly
Close-Close 0 3 25

EWMA (finite) 0 0 9
EWMA 120 9 13

OHLC + Close-Open 25 49 28
Parkinson 9 41 52

Garman-Klass 53 70 64
Rogers-Satchell 33 68 49
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Median R2 of SV beta forecasting power

• The SV beta has strong explanatory power for weekly and monthly realized volatilities

• The forecast power for longer quarterly periods is modest

• In comparison to the GARCH model, beta SV implies the explanatory power R2 higher by 10%− 15%

Weekly Monthly Quarterly
Close-Close 33% 54% 41%

EWMA (finite) 33% 44% 21%
EWMA 98% 48% 21%

OHLC + Close-Open 78% 66% 45%
Parkinson 75% 71% 49%

Garman-Klass 79% 72% 50%
Rogers-Satchell 79% 73% 46%
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5.4 Conclusions

• The beta SV model incorporates the mean-reversion feature and the leverage between volatility and price
returns

• Model can be also estimated using:

1. The econometric data of short-term implied volatilities

2. Options data (implied calibration)

• Model estimation and implementation are relatively straight forward
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6 Trading Volatility Risk-Premium

Once we identified how to measure and forecast realized volatility, we can make comparison between realized and
implied volatilities

For volatility trading:

• Realized volatility is a measure of price-returns volatility to replicate option pay-offs by delta-hedging

• Implied volatility is a measure of volatility at which options are quoted/traded in the market (Black-Scholes
volatility)

• The volatility premium is broadly defined as the spread between implied and realized volatilities:

Volatility Risk-premium = Implied volatility− Realized volatility

Volatility risk-premium can be realized by selling options and delta-hedging

• Selling options at implied volatility indicates the expected costs to replicate options: the premium is received
at trade inception and the price of option premium is primarily derived from the implied volatility

• Replication costs are the cost incurred by delta-hedging options to maturity: the higher is the realized volatility
- the higher are the replication costs so the total value of replication costs is primarily derived from the realized
volatility

• The realized P&L from selling and delta-hedging options is

Short Volatility P&L = Implied volatility from Selling− Realized volatility from Delta-Hedging

= Volatility Risk-premium
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If market were efficient and investors were risk-neutral, the average value of the volatility risk-premium would be
close to zero over long-term periods

However, the average value of the volatility risk-premium is positive over long-term periods and it is relatively large
so that it can serve as an investment strategy in itself

Why the volatility risk-premium exists is an interesting question which is also important to understand the drivers
behind volatility trading: I cover it later
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6.1 Quantifying Realized and Expected Volatility Risk-Premium

Consider the strategy that sells options with maturity of one month every 3rd Friday of the month and delta-hedges
options during the month up to their expiry, and then rolls into new delta hedged position and so on

The realized P&L on this strategy every month is closely connected to the realized volatility premium:

Realized Volatility Risk-Premium = Implied volatility from Selling at 3rd Friday

− Realized volatility during month up to the next 3rd Friday

where the realized volatility can be measured by any of the sample space estimators

Also, as a trading signal we consider the expected volatility risk-premium at the beginning of the 3rd Fridy right
before the trade inception:

Expected Volatility Risk-Premium = Implied volatility from Selling at 3rd Friday

− Expected volatility for coming month up to the next 3rd Friday

where the forecast for realized volatility can be made using sample space estimators, GARCH type models, or the
beta SV model

For the S&P 500 index on average both realized and expected vol premiums are positive
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For computing the estimate of the expected volatility risk-premium, we use the forecast volatility computed using a
selected method or model

As a result, it is important that the selected model for volatility forecast has a high explanatory power

A robust estimator should produce the empirical probability density of the expected risk premium with a higher
peak and less skewed to the right to be more conservative

Illustration of the kernel empirical density (using past 11 years) for

• The realized volatility premium

• The expected volatility premium computed using OHLC estimator

• The expected volatility premium computed using beta SV model
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6.1.1 Back-test for Monetizing Volatility Risk Premium

Straddle is a typical strategy for monetizing the volatility risk-premium

Short Straddle = short at-the-money put and call options

Left Figure: Fund value shorting 1 month straddle on S&P500 index ETF (SPY) rolled every month and delta-
hedged at end of day from 2005 to 2016

Right Figure: fund running % drawdowns compared to S&P 500 index ETF

Number of sold option contracts at monthly rolls are set to

Number contracts = 2
Fund Value

Spot Price

Performance vs S&P 500 index ETF

An. Return Stdev Sharpe Max DrawDown
Short Straddle 7.43% 8% 0.88 -19%

S&P 500 6.58% 18% 0.36 -52%
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6.2 Quantifying Implied Skew Risk-Premium

The volatility risk-premium broadly refers to the spread between at-the-money implied volatility and realized sta-
tistical volatility

The volatility skew measures the degree of how expensive are out-of-the-money options relative to ATM options
measured in terms of implied volatilities

For stock index options:

• Put options are relatively more expensive than ATM options

• Call options are relatively less expensive than ATM options

To measure the volatility skew for puts we can apply the following formulas:

1. Constant %-strike difference:

Put 95% skew = ATM Vol− Put Volatility(Strike=95% of Spot)

2. Constant Delta difference:

Put 25-Delta skew = ATM Vol− Put Volatility(-25 Delta Strike)

3. One standard deviation from the Spot:

Put 5% skew = ATM Vol− Put Volatility(Strike=Spot× e−σATM

√
T )

where T is time to maturity and σATM is ATM volatility for this maturity

Similarly we define the skew for OTM call options
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Put skew for S&P500 index ETF is persistent

The average values for past 11 years:

Put Call
25%-Delta 3.20% -1.86%

Fixed 95%/105% Strike 4.38% -2.30%
Fixed 1Std 3.96% -2.58%
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6.3 Quantifying Realized and Expected Skew Risk-Premium

The realized implied volatility skew measures how implied at-the-money changes when the asset changes which can
be estimated using the following regression model:

σATM(tn)− σATM(tn−1) = β ×
(

S(tn)

S(tn−1)
− 1

)
+ εn (6.1)

where estimated parameter β measures the realized implied volatility skew

When instead of implied skew we measure change in realized volatility, we apply the estimate of the volatility beta
in the beta SV model which serves as a measure of expected skew

Finally, the implied volatility skew is implied from put skew:

Implied Volatility skew = 2× Put 95% skew/5%

The implied volatility skew is consistently and significantly larger than statistical measures of the realized skew
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6.3.1 Back-test for Monetizing Skew Risk Premium

Strangle is a typical strategy for monetizing the skew risk-premium

Short Strangle = short out-the-money put and call options

Left Figure: Fund value shorting 1 month Strangle on S&P500 index ETF (SPY) rolled every month and delta-
hedged at end of day from 2005 to 2016
Right Figure: fund running % drawdowns compared to S&P 500 index ETF

Option strikes at monthly rolls are set to

PutStrike = Spot× e−σATM

√
T , CallStrike = Spot× e+σATM

√
T

The number of sold option contracts is set in the same way as for straddle fund

Performance vs S&P 500 index ETF

An. Return Stdev Sharpe Max DrawDown
Short Straddle 8.55% 7% 1.21 -19%

S&P 500 6.58% 18% 0.36 -52%
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6.4 Systematic Volatility Trading Strategies

Typical strategies to monetize volatility premiums:

1. Delta-Hedged strategies:

• Typically are run by large institutionals

• Require ability to trade cheaply in the underlying asset

• Typically lack systematic approach: the flow is client driven, often involves some discretionary decisions
about timing, sizing, delta adjustments

2. Naked option selling strategies:

• Researched and promoted by CBOE

• Marketed and offered by some investment banks for buy side investors

• Follow systematic approach: regular re-balancing, rule-based position sizing
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6.5 Analysis of Delta-Hedging Cost vs Risk

While delta-hedging reduces risks it also spends a lot on transaction costs

Provided are backtests of four strategies using S&P 500 index ETF from 2005 to 2016:

1. Selling naked ATM straddles every month with number of sold contracts set at every roll to

Number contracts =
Fund Value

Spot Price

2. Selling delta-hedged ATM straddles every month with number of sold contracts set at every roll as for 1st
strategy

3. Selling delta-hedged ATM straddles with double of the notional

4. Selling delta-hedged ATM straddles with triple of the notional

For delta-hedge strategies, the delta-hedging takes place by the end of each trading day and transaction costs are
3bp (typical for large cap ETFs)

Figure: with transaction costs, annualized returns increase less than linearly when increasing the notional
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However when increasing the trade notional, the risk is increasing linearly:

• The Sharpe ratio starts declining

• The realized maximum drawdown increases

• With higher notional, the drawdown risk of delta-hedged strategies is similar to less leveraged naked short
option strategies
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6.6 Conclusions for Design of Systematic Volatility Trading Strategies

Both delta-hedged and naked short strategies can be implemented in an automated rule-based way and offered to
clients

The decision whether implement delta-hedging or not should be based on the risk - reward considerations with
regard to transaction costs and tolerance to delta and vega risk

For full automation of delta-hedged strategies the following analytics needs research and implementation:

• Computation of option delta in an optimal way to partially offset vega risks

• Rule-based timing of re-hedging times in order to minimize transaction costs without increasing delta risk too
much

Next I consider these two topics
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7 Computing Option Delta Consistently with Empirical Dynamics

To compute option delta consistently with observed dynamics of the volatility surface we need to model the dynamics
of the volatility surface

Dimensionality: how many factors needed for modeling vol surface ?

Left table: PCA for covariance matrix of weekly changes in ATM vols (1m,2,3m,6m,1y) and returns with 6 factors
(variables have scalable vols) - two factors explain more than 90% of changes in returns and ATM vols

Right table: PCA for correlation matrix of changes in ATM vols, skews, convexities, and returns with total of 16
factors - need about four factors to explain 85% of variability - need extra factors to model changes in skew and
convexity

Factor SPX FTSE Nikkei Stoxx
1 93% 89% 56% 86%
2 97% 94% 74% 94%
3 100% 97% 85% 98%
4 100% 99% 94% 99%
5 100% 100% 99% 100%
6 100% 100% 100% 100%

Factor SPX FTSE Nikkei Stoxx
1 42% 34% 34% 39%
2 63% 59% 50% 69%
3 77% 75% 64% 85%
4 83% 85% 75% 90%
5 88% 92% 82% 93%
6 91% 94% 87% 96%
7 94% 96% 91% 97%
8 95% 98% 94% 98%
9 97% 99% 96% 99%

10 98% 99% 97% 100%
11 99% 100% 98% 100%
12 99% 100% 99% 100%
13 100% 100% 100% 100%
14 100% 100% 100% 100%
15 100% 100% 100% 100%
16 100% 100% 100% 100%
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7.1 Beta SV model for Parametrization of Implied Volatilities

Apply the beta SV model without mean reversion (equivalent to a modified SABR model):

dSt = VtSt

[
St

S

]βLV

dW
(0)
t

dVt = βSV
dSt
St

+ εVt

[
St

S

]βLV

dW
(1)
t

= βSV VtdW
(0)
t + εVtdW

(1)
t

(7.1)

where S is a reference spot, typically S = S0

To produce volatility skew and price-vol dependence:

1. βLV is the local vol or backbone beta, βLV ≤ 0

2. βSV is the vol beta, βSV ≤ 0, which measures the sensitivity of instantaneous vol to price returns independent
on assumption about the local vol of the spot (it is just a regression of vol changes explained by returns)

βSV and ε are vol beta and residual vol in terms of the log-normal basis for the instantaneous volatility of
returns; βSV and ε are re-scaled for the local volatility basis:

βSV = βSV

[
S

S

]βLV

, ε = ε

[
S

S

]βLV

Connection to SABR model (notations from Hagan et al (2002)):

V0 = α̂ , βLV = β − 1 , βSV = νρ , ε = ν
√

1− ρ2

Approximation to Black-Scholes-Merton (BSM) implied vol σBSM(S;K) is obtained:

σBSM(K;S) =
ln(S/K)

f(y)
, y =

1

V0

[
S
S

]−βLV −
[
K
S

]−βLV

−βLV
(7.2)
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f(y) =
1√

(βSV )2 + ε2
ln

J(y)
√

(βSV )2 + ε2 + ((βSV )2 + ε2)y − βSV√
(βSV )2 + ε2 − βSV


J(y) =

√(
1 +

(
(βSV )2 + ε2

)
y2 − 2βSV y

)
Quadratic expansion for BSM implied vols is obtained by assuming βLV → 0 we have y → ln(K/S), and limit
in log-moneyness k = ln(K/S) becomes:

σBSM(K;S) =

[
S

S

]βLV
[
V0 +

1

2

(
V0βLV + βSV

)
k +

1

12

(
V0β

2
LV −

(βSV )2

V0
+ 2

ε2

V0

)
k2
]
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Empirical testing for skew components: the local βLV and stoch vol βSV are linked by relationship:

σATM(S)βLV + βSV = 2× SKEW(S)

Apply the regression analysis to back-test the empirical relationship between the two using time series of market
data

2× SKEWtn(S) = a0 + a1 × σATM,tn(S)

The significance (small p-values) of a0 (a1) means significance of stoch vol (local vol) component to explain the level
of the skew

Table&Figure: Estimates for S&P index from 2007 to 2014 - the empirical link between skew and atm
volatility is very weak

S&P500 â0 â1 R2 p-value a0 p-value a1
1m -1.72 0.86 8.79% 0.0000 0.0000
3m -1.11 0.34 4.31% 0.0000 0.0000
6m -0.80 0.17 1.56% 0.0000 0.0112
1y -0.58 0.09 0.52% 0.0000 0.1321
2y -0.40 0.00 0.00% 0.0000 0.9603
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Changes in skew are not correlated to changes in price and ATM vols - important for correct predict of
vol and skew P&L

Empirical observations yet again confirm log-normality dynamics - Using S&P500 data from January 2007 to De-
cember 2013

Top Figures: weekly changes in 100%− 95% skew vs price returns for maturity of one month (left) and one
year (right): Regression slope = 0.13 (1m) & 0.03(1y); R2 = 0% (1m) & 1% (1y)

Bottom Figures: weekly changes in 100%− 95% skew vs changes in ATM vols for maturity of one month
(left) and one year (right): Regression slope = −0.15 (1m) & −0.06 (1y); R2 = 0% (1m) & 2% (1y)
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7.2 Minimum Variance Delta

P&L of vanilla options marked with BSM pricer for option price U (S0, σBSM (K;S0)) with implied vol σBSM (K;S0)

Delta-hedging portfolio:

Π(S, σBSM (K;S)) = U(S, σBSM (K;S))−∆× S

P&L from change in spot S → S + dS

P&L = Π (S + dS, σBSM (K;S + dS))− Π (S0, σBSM (K;S0))

≈ ∂

∂S
U (S, σBSM (K;S)) dS +

∂

∂σ
U (S, σBSM (K;S)) dσBSM(K;S + dS)−∆× dS

where dσBSM(K;S + dS) is vol P&L:

dσBSM(K;S + dS) = σBSM(K;S + dS)− σBSM(K;S)

Minimum-variance delta ∆min-var is applied to hedge both delta and delta-induced vega risk:

∆min-var =
1

dS
[U (S + dS, σBSM (K;S + dS))− U (S0, σBSM (K;S))]

=
∂

∂S
U (S, σBSM (K;S)) +

∂

∂σ
U (S, σBSM (K;S))

σBSM(K;S + dS)− σBSM(K;S)

dS

BSM vol P&L - as I showed for modified SABR, any generic local stoch vol can be approximated by
quadratic vol for k = ln(S/K):

σBSM(K;S) = σATM(S) + SKEW× k +
1

2
CONV× k2
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Using it, vol P&L is given by:

σBSM(K;S + dS)− σBSM(K;S) = dσATM(S + dS) + SKEW× dk +O(k × dk) +O(dk2)

≈ dσATM(S + dS) + SKEW× dk

where dk is the change in the money-ness:

dk = log

(
K

S + dS

)
− log

(
K

S

)
= −dS

S
+O

(
dS

S

)2

≈ −dS
S

and dσATM(S + dS) is the change in the ATM vol:

dσATM(S + dS) = σATM(S + dS)− σATM(S)

So that, given bump in spot dS, the change in BSM vols is given by:

σBSM(K;S + dS)− σBSM(K;S)

dS
≈ 1

dS
[σATM(S + dS)− σATM(S)]− SKEW× 1

S

Minimum-variance delta for a generic model becomes:

∆min-var =
∂

∂S
U (S, σBSM (K;S)) +

∂

∂σ
U (S, σBSM (K;S))

×
[

1

dS
{σATM(S + dS)− σATM(S)} − SKEW× 1

S

]

Everything here depends only on the implied skew apart from change in the ATM volatility, which
is a model implied quantity

So all model calibrated to the same skew produce delta only if their implied changes in the ATM
volatility are different
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Applying the minimum-var delta, the projected change in vol level V0 is:

V0(S + dS)− V0(S) = βSV ×
dS

S

As a result, for modified SABR the projected change in ATM vol is:

σATM(S + dS)− σATM(S) = βLV ×
[
SβLV −1

S
βLV

]
V0 × dS + βSV

[
S

S

]βLV

× dS

S

= βLV × σATM(S)× dS

S
+ βSV ×

dS

S

Minimum-variance delta for modified SABR becomes:

∆min−var =
∂

∂S
U (S, σBSM (K;S))

+
∂

∂σ
U (S, σBSM (K;S))× [βLV × σATM(S) + βSV − SKEW]

1

S

The key point of this derivation is that I showed that βLV and βSV are linked to market implied skew
by:

σATM(S)βLV + βSV = 2× SKEW

So different values of βLV and βSV always must produce the same skew when fitted to the given market
skew

Delta ∆min-var becomes:

∆min-var =
∂

∂S
U (S, σBSM (K;S)) +

∂

∂σ
U (S, σBSM (K;S))× SKEW× 1

S
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The minimum-variance delta does not depend on a particular choice of SABR parameters for skew
βLV and βSV , as long as they are calibrated to the same skew (!)

Illustration of minimum-variance delta for modified SABR

Given market SKEW and CONV, we set the percentage of skew explained by the local volatility, wLV :

σATMβLV = wLV × [2× SKEW]⇒ βLV = wLV ×
2× SKEW

σATM
βSV = 2× SKEW× (1− wLV )

and solve for implied value of residual vol ε to match convexity CONV:

ε2 = 3σATM × CONV− 2 [2wLV − 1] (SKEW)2

Figure: SABR implied vol (left) and model delta for 1y call (right) using σATM = 0.15, SKEW = −0.3, CONV = 0.2,
wLV = [0%, 33%, 66%, 100%]

Different specifications of local and stoch vol produce the same implied vols and model deltas
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Minimum variance delta is important for hedging:

We hedge against changes in risk factors (spot, ATM vol, etc)

The hedging is understood in the least-squares sense

For delta computation, choice of any particular model for stoch or local vol is irrelevant if models are
calibrated to same implied vols

Risk-neutral volatility models take market prices as inputs and extrapolate the implied dynamics - they produce
wrong hedges if the implied dynamics is different from the realized

In presence of the risk-aversion, implied distributions may (and do) significantly differ from realized especially for
fat-tailed distributions

Risk-neutrals model are poor tools for inferences about realized dynamics

Modeling challenge is to have a model that predicts the empirically observed dynamics of the underly-
ing price and its implied vols and yet is consistent with the implied skew observed in the market
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7.3 Empirical volatility skew-beta

Empirical volatility skew-beta is important for computing correct option delta consistently with empirical dynam-
ics

Figure 1) Apply regression model (5.1) for time series of ATM vols for maturities T = {1m, 3m, 6m, 12m, 24m}
(m=month) to estimate regression volatility beta βREGRES(T ) using S&P500 returns: δσATM(T ) = βREGRES(T ) ×
δS

Volatility beta for SV dynamics is instantaneous beta for very small T

Regression vol beta decays in log-T due to mean-reversion: long-dated ATM vols are less sensitive in absolute values
to price-returns

Figure 2) Implied vol skew for maturity T has similar decay in log-T

Figure 3) Volatility skew-beta is regression beta divided by skew

Skew-Beta(T ) ∝ βREGRES(T )/SKEW(T )

It is nearly maturity-homogeneous

y = 0.19*ln(x) - 0.37

R² = 99%
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Volatility skew-beta combines the skew and volatility P&L together

Given price return δS:
S → S {1 + δS}

Volatility P&L is computed by:

1. For strikes re-based to new ATM level

Log-moneyness does not change, δZ(K;S) = 0

P&L follows change in ATM vol predicted by regression beta and vol skew-beta:

δσBSM(K) ≡ δσATM(S) = βREGRESS × δS
= SKEWBETA× SKEW× δS

2. For strikes fixed at old ATM level

Log-moneyness changes by δZ(K;S) ≈ −δS

P&L is change in ATM vol adjusted for skew P&L:

δσBSM(K) ≡ δσATM(S)− SKEW× δS
= [SKEWBETA− 1]× SKEW× δS

Positive change in ATM vol from negative return is reduced by skew
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Volatility skew-beta under minimum-variance approach is applied to compute min-var delta ∆ for
hedging against changes in price and price-induced changes in implied vol:

1. We adjust option delta for change in implied vol at fixed strikes

2. The adjustment is proportional to option vega at this strike:

∆(K,T ) = ∆BSM(K,T ) + [SKEWBETA(T )− 1]× SKEW(T )× VBSM(K,T )/S

∆BSM(K,T ) is BSM delta for strike K and maturity T

VBSM(K,T ) is BSM vega, both evaluated at volatility skew

I classify volatility regimes (using definitions of Derman 1999) using vol skew-beta for delta-adjustments:

∆(K,T ) =


∆BSM(K,T ) + SKEW(T )× VBSM(K,T )/S, Sticky local

∆BSM(K,T ), Sticky strike

∆BSM(K,T )− SKEW(T )× VBSM(K,T )/S, Sticky delta

∆BSM(K,T ) + 1
2
SKEW(T )× VBSM(K,T )/S, Empirical S&P500

”Shadow” delta is obtained using ratio O (may be different from 1/2):

∆(K,T ) = ∆BSM(K,T ) +O × SKEW(T )× VBSM(K,T )/S

which is often an ad-hoc adjustment of option delta made by traders

Instead, we can apply the regression analysis to estimate the adjustment empirically
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Estimation and stationarity of skew-beta: skew-beta β(T ) is estimated empirically (for each vol maturity) by

regression of changes in ATM vols σ
(T )
ATM(tn) predicted by price-return times skew Skew(T ):

σ
(T )
ATM(tn)− σ(T )

ATM(tn−1) = β(T ) ×
[
S(tn)− S(tn−1)

S(tn−1)
× Skew(T )(tn−1)

]
The skew-beta is range-bound between 1 and 2 with average of about 1.5, with weak dependence on
maturity time

The regression has explain of about 70% for S&P 500 vols

Figure: skew-beta for 1m and 1y S&P 500 vol using rolling window of three month
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7.4 Empirical Back-test For Volatility Trading Strategies

Empirical skew beta applied to vol trading strategies can significantly increase performance - P&L
for delta-hedging short 6m straddle on EuroStoxx50

Back-test of monthly rolls into new straddle with maturity of 6m from 2007 to 2015: account for delta-hedge P&L
and vol P&L

Delta-hedge daily using specific rules for option delta:

1. StickyStrike - hedging at sticky strike vol (BSM delta)

2. StickyLocalVol - using minimum variance hedge

3. Empirical - using skew-beta with estimation using past data

Only empirical hedge produces positive Sharpe ratio post costs
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Incorporating trading signal + empirical hedging produces superior P&L for delta-
hedging short 6m straddle on EuroStoxx50

Back-test of monthly rolls into new vols with maturity of 6m from 2007 to 2015 with trading
signals using inference for market regimes

Delta-hedging using empirical skew-beta outperforms significantly
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7.5 Conclusions

To explain reduction in volatility of delta-hedging P&L for given hedging portfolio Π for
option U on S:

Π(t, S, V ) = U(t, S, V )−∆× S

Minimum-var delta ∆ is computed by minimizing variance of Π using SV beta dynamics under
risk-neutral pricing kernel with implied vol beta β[I]:

∆ = US + β[I] × UV /S

where US and UV model delta and vega

Given realized return δS, we apply beta SV for change in vol δV under statistical measure:

δV = β[R] × δS + ε[R] × V
√
δt

By Taylor expansion of realized P&L:

δΠ(t, S, V ) =
[
β[R] − β[I]

]
× UV × δS + ε[R] × UV × V

√
δt+O(dt)

ε(R) is random non-hedgable part from residual vol-of-vol

O(dt) part includes quadratic terms (δS)2, (δV )2, (δS)(δV )
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Dependence on return times spread between implied vol beta β[I] and realized β[R]:
β[R] − β[I] - translates into higher P&L vol

It is expensive to hedge vega

Volatility strategy with hedging model consistent with empirical dynamics can re-
duce costs and P&L volatility
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8 Dealing with Transaction Costs

The delta-hedging in practice is applied in the discrete time setting

As a result, to optimise the delta-hedging for the practical implementation, we need to consider
the discrete time framework

I will introduce my approach under the discrete time setting and the transaction costs to optimize
the delta-hedging

I assume that the option position is related to a single expiry and the position is held to maturity,
so that the primary risk to the terminal P&L depends only on the realized path of price returns
and not on the realized path of the implied volatility

To implement a quantitative model for signal generation, we need to consider the following three
aspects:

1. Given a spread between expected realized volatility and current implied volatility, say of 2%,
what is the expected P&L that can be generated at the option maturity by the delta-hedging
strategy under the transaction costs?

2. What is the expected volatility of the profit-and-loss (P&L) of this delta-hedging strategy?

3. How to optimize the Sharpe ratio for the delta-hedging strategy using algorithmic and
deterministic rules for the re-balancing of the delta-hedge?

We need a quantitative model model for the delta-hedging P&L
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8.1 Mathematical model for the Delta-hedging P&L

For an example consider a short position in an at-the-money (ATM) straddle

Given the initial option price, we compute the change in the option price by applying the Taylor
expansion in the time passed from the last hedge rebalancing, TimePassed, and in the price
change, PriceChange:

Option Price change = −Theta× TimePassed+Delta× PriceChange+
1

2
Gamma× PriceChange2

Here:

• The first term is the time decay measured by the option Theta

• The second term is the delta term related to the change in price measured by the option
Delta

• The third term is the option Gamma term multiplied by the price change squared

For the delta-hedged position, the delta term cancels out as our stock position for the delta-hedge
will generate the offsetting P&L

As a result, the P&L of the short delta-hedged position is a quadratic function of the realized
return squared:

P&L = Theta× TimePassed− 1

2
Gamma× PriceChange2
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Figure 1: the profile of the P&L generated by the short delta-hedged position

The green line corresponds to the straddle Theta, which is the gain we receive independently
from price return

The red line represents the loss from change in the option price arising from option gamma times
the return squared, which has the shape of a parabola

The total P&L is obtained as the sum of the theta and the short gamma P&Ls
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The market price of the option value is computed using the Black-Scholes-Merton (BSM) formula
with implied volatility denoted by ImpliedVol

Apply the BSM equation to represent the option Theta using the option Gamma as follows:

Theta = −0.5×Gamma× SpotPrice2 × ImpliedV ol2

As a result, the P&L of the short delta-hedged position in the straddle becomes:

P&L(n) =
1

2
(ImpliedV ol2 −RealizedV ol2)×

(
Gamma× SpotPrice2 × TimePassed

)
RealizedVol is the realized volatility computed by:

RealizedV ol2 =
PriceChange2

TimePassed× SpotPrice2
(8.1)

Therefore the break-even return at which the P&L is zero is:

BreakEvenReturn = ImpliedV ol ×
√
TimePassed
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Expected Total P&L

The total realized P&L realized at option maturity is the sum of single period P&Ls

After some slight simplifications, the expected P&L is the spread between the squares of the
implied and realized volatilities multiplied by the option gamma (at the inception of the trade)
and maturity time:

ExpectedP&L =
1

2
(ImpliedV ol2 −RealizedV ol2)× (Gamma× SpotPrice(0)2)×MaturityT ime

The remarkable observation is that this result is independent from the hedging frequency

Volatility of P&L

The primary risk for the P&L volatility comes from the volatility of squared returns and the resid-
ual volatility arising from the spread between implied and realized volatilities and the stochastic
volatility and jumps in price returns

I derive the following formula for the volatility of the P&L that has the hedgable term related
to the returns volatility, denoted by ReturnsVolatility, and the residual term, denoted by Resid-
ualVolatility:

P&Lvolatility(HedgingFrequency) =

√
ReturnsV olatility2

HedgingFrequency
+ResidualV olatility2

The more frequently we delta-hedge, the more P&L volatility we can eliminate
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The residual volatility, which cannot be eliminated by delta-hedging, arises from the two
sources:

1. The spread between implied and realized volatilities

2. Un-hedgeable delta risk due to jumps and gaps in the price

When the hedging frequency is small the P&L volatility is high

By increasing the hedging frequency the P&L volatility declines but the reduction becomes smaller
and smaller as the hedging frequency increases

Transaction costs

Transaction costs occur when we buy or sell the stock to cover our delta

I assume that the strategy is rebalanced using the delta-hedge computed with quoted price S:

• buy orders are executed at price S ∗ (1 + 0.5 ∗BidAskSpread)

• sell orders are executed at price S*(1-0.5*BidAskSpread)

where BidAskSpread measures the bid-ask spread

Delta-hedging with transaction costs is first considered by Leland (1985)

I show that the total expected transaction costs are proportional to the square root of the hedging
frequency times the BidAskSpread and some constant C related to gamma:

ExpectedCosts(HedgingFrequency) = BidAskSpread×
√
HedgingFrequency × C

108



The total expected P&L is then obtained as the expected P&L minus the expected transaction
costs:

TotalP&L(HedgingFrequency) = ExpectedP&L− ExpectedCosts(HedgingFrequency)

Given the obtained formulas for expected P&L and its volatility, I compute the Sharpe ratio of
the position as follows:

Sharperatio(HedgingFrequency) =
TotalP&L(HedgingFrequency)

P&Lvolatility(HedgingFrequency)
(8.2)
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Illustration:

• The expected P&L does not depend on the hedging frequency

• The P&L volatility

• The expected P&L declines as we increase the hedging frequency

• The Sharpe ratio

As we increase the hedging frequency, the P&L volatility declines increasing the Sharpe ratio

However, as we keep increasing the hedging frequency, the transaction costs increase while the
P&L volatility drops as a slower rate, so that the Sharpe ratio begins to decline

The analytic solution for the optimal hedging frequency that maximizes the expected Sharpe
ratio can be found in my paper (Sepp (2013))
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8.2 Re-balancing using price and delta bands
To minimize the transaction costs, I consider the two cases:

1. the re-balancing is based on bands for the price change

2. the re-balancing is triggered by changes in option delta

Figure illustrates the Sharpe ratio obtained by using both the analytical formula as well as Monte-
Carlo simulations of the delta-hedged P&L using fixed-time and delta and price bands:

• The method provides a very good approximation to the actual Sharpe ratio obtained by
Monte Carlo simulations under the time-based re-hedging

• Proposed approximations to convert the time based rule into the price and delta bands also
provide a reliable estimate for the Sharpe ratio

• Using the approximations for the price and delta bands, we can first find the optimal hedging
frequency for the time-based re-hedging and then apply these approximations to get the
equivalent price and delta bands

• Price and delta bands help to increase the realized Sharpe ratio by minimizing realized
transaction costs
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9 Explaining the volatility risk-premium using econometric model

with risk-aversion
It is important to understand and explain the volatility risk-premium in a quantitative way and
understand the fundamental origin of P&L of these strategies

These type of questions can be analyzed using Asset Pricing theory (Cochrane (2005), Asset
Pricing) which studies:

1. Empirical risk-reward dynamics of different assets and strategies

2. Theoretical models to explain empirical observations and model investment&consumption
choices using valuation kernels with risk preferences

Assets include everything that can be considered as an investment:

• Stocks, stock indices, credit bonds,...

• Derivative securities

• Quantitative trading strategies and, in particular, volatility trading strategies

Asset pricing incorporates the risk-neutral valuation theory but not the other way around

The toolkit of asset pricing is developed to describe how risk factors evolve econometrically and
price-formation in terms of risk factors

Risk-neutral models with implied calibration assume a given set of market prices and extrapolate
the implied dynamics of risk factors, which may be not (typically it is not) consistent with their
realized dynamics
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Asset pricing using valuation kernels states that the price of any asset pt equals to the
expectation under stochastic discount factor (statistical measure):

pt = Et [mt+1xt+1]

xt+1 is risky pay-off at time t+ 1 (one-period model)

mt+1 is the stochastic discount factor to translate future payoffs in present value terms

E is expectation under the statistical measure

Introduce gross return Rt+1 = (xt+1 − pt)/pt and after re-arrangement:

Et [Rt+1]−
(

1

Et [mt+1]
− 1

)
= − 1

Et [mt+1]
× Covt [Rt+1,mt+1]

where Covt is the covariance between the return and discount factor

The return Rf on risk-free bond is uncorrelated with the discount factor:

Rf
t+1 =

1

Et [mt+1]
− 1 ⇒ Et [mt+1] =

1

1 +Rf
t+1

Finally, the expected return is risk-free rate plus risk-adjustment:

Et [Rt+1] = Rf
t+1 − (1 +Rf

t+1)× Covt [Rt+1,mt+1]
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Asset pricing under stochastic discount rate

Assume that the valuation kernel can be presented as:

mt+1 = e−Dt+1

where Dt+1 is market discount rate (think of rate of return on the S&P 500 index or BBB-bond
index)

Then covariance between risky return and market rate becomes:

Covt [Rt+1,mt+1] ≈ −Covt [Rt+1, Dt+1]

Define the expected return beta to market discount rate:

Betat [Rt+1, Dt+1] =
Covt [Rt+1, Dt+1]

Vart [Dt+1]

The expected return on risky asset can be decomposed by:

Et [Rt+1]−Rf
t+1 = Betat [Rt+1, Dt+1]× λ

where λ is the unit price of risk (generic specification)

λ = Vart [Dt+1] (1 +Rf
t+1)

In the CAPM model, the unit price of risk is specified by spread between expected market return
and risk-free rate:

λ = E [Dt+1]−Rf
t+1
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Asset pricing with risk-aversion is applied for valuation of securities by introducing
risk-aversion and utility functions for discounting risky pay-offs

”Individuals are risk averse if they always prefer to receive a fixed payment to a random payment
of equal expected value” (Dumas-Allaz (1996))

For exponential utility with risk-aversion parameter γ > 0, apply exponential relaxation:

q[R,D] ∝ e−γ(R−R) × p[R,D]

p[R,D] is the statistical kernel (to model econometric dynamics)

q[R,D] is the valuation kernel (to compute expected returns)

R is the mean under the statistical kernel p

Figure: Valuation kernel assigns more weight for negative returns

The risk-aversion may change the moments significantly if statistical kernel features
fat tails
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Table&Figure: Risk-Aversion for Gaussian statistical kernel (normalized to volatility of
1.00) with relaxation parameter γ = −0.10 shifts the valuation kernel to the left

Only the mean under the valuation kernel is changed by γ = −0.10

Higher moments of valuation kernel are unchanged

statistical Risk-Aversion Kernel

Mean 0.00 -0.10

Volatility 1.00 1.00

Skew 0.00 0.00

Kurtosis 0.00 0.00

0.002

0.003

0.004

0.005 Normal PDF under Risk-Aversion

Statistical

Risk-Aversion Kernel

0.000

0.001

-5 -3 -1 1 3 5
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Table&Figure: Risk-Aversion under Skew-Gaussian PDF (normalized to volatility of
1.00, large negative skew of −0.85 and small kurtosis) with relaxation parameter γ = −0.10

The mean under the valuation kernel is changed by γ = −0.10

Also, the implied volatility under the valuation kernel is changed by 4.5% - the impact
from the statistical skew

Higher moments of valuation kernel are slightly changed

Statistical Risk-Aversion Kernel

Mean 0.00 -0.10

Volatility 1.00 1.04

Skew -0.85 -0.81

Kurtosis 0.71 0.58

0.002

0.003

0.004

0.005
Skewed-Normal PDF under Risk-

Aversion
Statistical

Risk-Aversion Kernel

0.000

0.001

0.002

-5 -3 -1 1 3 5
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Table&Figure: Risk-Aversion under Fat-Tailed PDF using mixture of normals (nor-
malized to volatility of 1.00, zero skew and large excess kurtosis of 8.50) with relaxation parameter
γ = −0.10

The implied volatility under the valuation kernel is changed by 3.5% - the impact from
the statistical kurtosis

The implied skew under the valuation kernel becomes large and negative: the impact
from the fat tails of the statistical distribution (statistical kurtosis) is significant

Statistical Risk-Aversion Kernel

Mean 0.00 -0.10

Volatility 1.00 1.03

Skew 0.00 -0.82

Kurtosis 8.50 8.30

0.004

0.006

0.008

0.010 Fat-tailed PDF under Risk-Aversion

Statistical

Risk-Aversion Kernel

0.000

0.002

-5 -3 -1 1 3 5
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9.1 Explanation of Volatility Risk-premium using risk-aversion

If asset returns under statistical kernel exhibit skews and fat tails and investors are risk-averse
to negative returns:

1. The implied distribution under the valuation kernel has higher volatility and, especially, the
skewness

2. The difference between statistical and implied moments (like the volatility and skew) is
termed the risk-premium

3. The valuation of derivatives securities should incorporate the risk-premium under risk-
aversion
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9.2 Empirical Evidence

I show empirical statistics of returns on major risk assets:

1. S&P500 total return: weekly returns from 1-Jul-86

2. Call-S&P500: CBOE BuyWrite index - long in the S&P 500 index, sell one-month OTM
calls

3. Put-S&P500: CBOE PutWrite index - sell one-month ATM puts

S&P500 returns have moderate skew and kurtosis: large positive and negative returns are equally
likely (−24.70% was realized in crash of 1987)

Selling either call or put options increases considerably skew and kurtosis

Fitting of tail parameter ν of student t-distribution: four moments exists for S&P500 returns;
PutWrite index returns may not have finite variance

Realized return on PutWrite is 2% higher and Sharpe ratio of 0.92 vs 0.51 for S&P
500 S&P500 Call-S&P500 Put-S&P500

Return (annual) 8.76% 9.52% 10.61%

Stdev (annual) 17.25% 12.08% 11.50%

Sharpe 0.51 0.79 0.92

Skew -1.08 -2.62 -4.75

Excess kurtosis 10.57 32.68 76.44

Max return 13.17% 9.07% 8.28%

Min return -24.70% -23.42% -28.29%

Nu, t-distribution 4.45 2.14 1.61

Finite moment 4 2 1
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BofA ML US Corporate Total Return Credit Indices: weekly returns from 3-Jan-94
to 20-Oct-2014 1) AAA: highest quality investment grade credit bonds
2) BBB: credit bonds
3) CCC: high yield and speculative bonds

Returns on all AAA and BBB indices have moderate skew and with large kurtosis: large positive
and negative returns are equally likely

Returns on CCC high yield are not skewed but rather large kurtosis: large negative returns are
more likely

Fitting of tail parameter ν of student t-distribution: five moments exists for AAA and BBB
returns; CCC index returns have finite variance

Large Sharpe ratios for AAA and BBB of (1.07 and 1.30) compared to that for S&P 500 index
(0.50)

AAA BBB CCC

Return (annual) 5.82% 6.92% 7.85%

Stdev (annual) 5.44% 5.32% 11.04%

Sharpe 1.07 1.30 0.71

Skew -0.37 -0.69 -0.35

Excess kurtosis 5.18 5.12 9.79

Max return 5.00% 2.64% 10.84%

Min return -5.15% -5.94% -8.85%

Nu, t-distribution 5.10 5.51 2.07

Finite moment 5 5 2
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iShares US Treasury bonds ETFs: weekly returns from 30-Jul-02 to 21-Oct-14

1. 1-3y US Treasury bonds

2. 7-10y US Treasury bonds

3. 20+y US Treasury bonds

Long-term treasuries have very small skew and kurtosis - benefit from safe-haven status

Unlike anything else, returns on 3y T-s have positive skew and with rather large kurtosis with
only second moment being finite

3y 10y 20y

Return (annual) 2.41% 5.94% 8.07%

Stdev (annual) 1.38% 6.64% 12.85%

Sharpe 1.74 0.89 0.63

Skew 0.53 -0.18 0.00

Excess kurtosis 3.19 1.45 1.40

Max return 1.03% 2.94% 7.71%

Min return -0.78% -4.52% -7.95%

Nu, t-distribution 2.92 7.10 7.37

Finite moment 2 7 7
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9.3 Portfolio of delta-hedged derivatives under the risk-aversion

This is based on my original framework

Using exponential relaxation γ for valuation of asset with return Rt+1, we compute beta of return
to the market discount rate, Bγetat [Rt+1, Dt+1], under the valuation kernel:

B(γ)etat [Rt+1, Dt+1] = Betat [Rt+1, Dt+1]− γBetat
[
(Rt+1 −Rt+1)

2, Dt+1

]
+ o(γ2)

• Betat [Rt+1, Dt+1] is the return beta to the market discount rate under the statistical kernel

• Betat
[
(Rt+1 −Rt+1)

2, Dt+1

]
is the variance beta to the market discount rate under the

statistical kernel

Valuation of the expected return under the kernel with risk-aversion:

Et [Rt+1]−Rf
t+1 = Betat [Rt+1, Dt+1]× λ(1)

− γ × Betat
[
(Rt+1 −Rt+1)

2, Dt+1

]
× λ(2)

λ(1) and λ(2) are units of risk for return and variance betas

If variance of asset or strategy returns is negatively correlated to discount rate,
expected return on this strategy should be higher

For example when selling put options - if market goes down, the variance of short puts increases,
so by selling puts we need to charge extra premium for negative co-variance between discount
rate and variance of puts
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Delta-hedging P&L from trading in derivative security, can also be considered as an
asset with return Ot+1

Under perfect replication, the beta of return to market discount is zero:

Betat [Ot+1, Dt+1] = 0

Therefore with perfect replication and without the risk-aversion:

Et [Ot+1] = Rf
t+1

which is in accordance with the risk-neutral pricing
If the perfect replication is impossible (like hedging is discrete or there are residual risks
such as stochastic volatility of returns and implied vols), the variance of Ot+1 is not zero
As a result, even if the first-order risk can be removed:

Betat [Ot+1, Dt+1] = 0 , Betat
[
(Ot+1 −Ot+1)

2, Dt+1

]
6= 0

We obtain for expected return:

Et [Ot+1] = Rf
t+1 − γ × Betat

[
(Ot+1 −Ot+1)

2, Dt+1

]
× λ(2)

As a result, a derivative security with non-zero variance of delta-hedged returns
and negative covariance with the market discount rate will demand extra risk-
premium
For example, a short position in delta-hedged index puts
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Empirical evidence - estimation of variance beta βR2,D by applying regression for monthly
returns for assets considered before:

Yt+1 = α + βR2,DDt+1

Dt+1 is monthly return on the S&P500 index

Top table: Yt+1 = (Pt+1 − P t+1)
2 is realized second moment of monthly asset return

Bottom: Yt+1 = Vol[Pt+1] is monthly realized volatility of daily returns

All estimated regression parameters are significant

Variance beta is negative for all assets so that, given a negative return on the S&P500
index, the realized second moment and vols increase

Under the valuation kernel with risk-aversion, expected return on a risky asset is
higher&proportional to risk-aversion γ for this asset

Factor S&P500 Call Put AAA BBB CCC 3y 10y 20y

α̂ 2.38% 1.32% 1.21% 0.28% 0.37% 2.32% 0.03% 0.49% 1.87%

β̂R2,D -0.24 -0.21 -0.22 -0.03 -0.04 -0.22 0.00 -0.05 -0.26

R2 adj 6% 10% 10% 4% 3% 2% 10% 7% 8%

Factor S&P500 Call Put AAA BBB CCC 3y 10y 20y

α̂ 16.62% 11.07% 10.00% 5.01% 4.98% 5.43% 1.40% 6.79% 13.06%

β̂R2,D -0.92 -1.04 -1.14 -0.02 -0.09 -0.29 -0.05 -0.11 -0.22

R2 adj 17% 28% 29% 0% 5% 9% 8% 3% 3%
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Empirical evidence - explaining realized returns based on my derived equation for theo-
retical expected return:

Et [Rt+1]−Rf
t+1 = Bt [Rt+1, Dt+1]× λ(1) − γ × Bt

[
(Rt+1 −Rt+1)

2, Dt+1

]
× λ(2)

For empirical estimation, unit prices of risks λ(1) and λ(2) are specified:

• λ(1) - return on the S&P 500 index (expected carry on long risk)

• λ(2) - spread between average VIX in given month and realized monthly volatility of S&P500
daily returns (proxy for expected carry on short vol)

Estimation using monthly returns:

Rt+1 = α + βR,D2λ
(1)
t+1 + βR,D2λ

(2)
t+1

For assets Call and Puts shorting S&P500 volatility and for credit, realized variance
beta βR,D2 is positive, in line with the theoretical argument

Treasuries have negative variance betas - long-term realized and implied returns on
safety assets are lower

Factor Call Put AAA BBB CCC 3y 10y 20y

alpha α̂ -0.02% 0.05% 0.33% 0.07% -0.52% 0.28% 0.60% 0.93%

Ret β̂R,D 0.60 0.52 0.00 0.08 0.50 -0.02 -0.14 -0.28

VIX β̂R,D2 0.08 0.10 0.04 0.11 0.25 -0.02 -0.01 -0.04

Expl R2 adj 81% 72% 0% 17% 43% 12% 8% 9%
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9.4 Extension to portfolio of volatility strategies

Consider portfolio of short positions in delta-hedged options, On, each with weight wn:

Π =
∑
n

wnOn

Realized returns Õn,t+1 on On can be presented using a factor model:

Õn,t+1 −Rf
t+1 = β̃nD̃t+1 + εn,t+1

• D̃t+1 is realized change in the market discount rate

• β̃n is realized beta to the market discount rate

• εn,t+1 is realization of idiosyncratic risk factor that balances the left side

Realized return on portfolio Π̃n,t+1 is:

Π̃n,t+1 −Rf
t+1 = β̃ΠD̃t+1 + εΠ,t+1

where β̃Π is realized portfolio beta and εΠ,t+1 is excess return

β̃Π,t+1 =
∑
n

wnβ̃n,t+1 , εΠ,t+1 =
∑
n

wnεn,t+1
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Incorporating the spread between realized and implied returns

Implied excepted return under the valuation kernel with risk-aversion:

E(γ)
t [Ot+1]−Rf

t+1 = βΠ,D × E[Dt+1]− γ × βΠ2,D × λ

β̃Π,D and β̃Π2,D are portfolio implied betas and εΠ,t+1 is excess return:

βΠ,D =
∑
n

wnBetan,t [Rt+1, Dt+1]

βΠ2,D =
∑
n

wnBetan,t
[
(On,t+1 −On,t+1)

2, Dt+1

]
The difference between implied and realized returns:

H = E(γ)
t [Ot+1]− Π̃n,t+1

=
(
βΠ × E(γ)[Dt+1]− β̃ΠD̃t+1

)
− εΠ,t+1 − γ × βΠ2,D × λ

We would expect that for delta-hedged portfolio both implied and realized betas to the market
discount rate are negligible, so that:

H = −εΠ,t+1 − γ × βΠ2,D × λ

As a result, the portfolio of delta-hedged short-options makes money if the risk-
aversion is present:

• The implied beta of portfolio return variance (short options) is positively correlated to
market discount rate so βΠ2,D > 0

• For a diverse portfolio, residual risks εΠ,t+1 should be negligible (but see next slide!)
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9.5 Portfolio P&L and systemic gap risks: LTCM and MFG

Idiosyncratic risk εΠ,t+1 arises from being short risk factors such as implied vols or credit bonds

For a diverse portfolio, the sum of idiosyncratic risks εΠ,t+1 should be negligible

However, this is not true if shocks are systemic and portfolio idiosyncratic losses do
not cancel each other

For example, if all position produce the same gap losses over short-period, idiosyncratic risk
become systemic:

εn,t+1 = J ⇒ εΠ,t+1 = −J

and the portfolio P&L over short-period becomes:

P&L = −J − γ × βΠ2,D × λ

As a result, for a portfolio shorting market implied risk factors (vols and credit), we expect the
cyclical pattern of P&L with long periods of positive returns followed by sudden and
large systemic losses

This is very representative of derivatives business at large: I give one example using Long Term
Capital Management (LTCM)
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Position mis-sizing: blow-up of Long-Term Capital Management

Was successful in the first tree years from founding in 1994

Subsequent compression in risk-premiums lead to massive (about ×25) increase in leverage in
many quantitative strategies shorting the risk-premium across different markets (in implied vols,
credit, term premium in sovereign bonds, etc) - strategies were believed to be uncorrelated

In line with the equation I derive for portfolio in short delta-hedged options with
risk-premiums:

P&L = −γ × βΠ2,D × λ− J × 1{Systemic Loss}

LTCM made money in good times by shorting risk premium betting on βΠ2,D < 0

However in 1998 LTCM suffered the systemic loss J across different strategies and the firm was
liquidated

Figure: Value of 1, 000$ invested in LTCM, DJIA, T-s (source: Lowenstein (2000))
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Another example of misfortune in sovereign risk-premium: position mis-timing rel-
ative to market cycle by MF Global

During the summer of 2011, MFG accumulated about 6.3$ billion position (about ×4 of MGF
equity) in Italy bills

The trade was robust fundamental view on Italy bills with about one year to maturity at yield
of 3% (carry of 0.2$ billions or 12% on the equity)

But timing and position sizing were poor relative to the market cycle: the position was
accumulated right in the middle of EU crisis with high probability of being in stressed regime

In October 2011, MF Global experienced a big loss on its positions and was liquidated: just
before Italy bills started to rally and markets recovered (in 2016, Italy 3y bond traded close to
zero and at negative rates)

Figure: Italy bills rate (left) and probability of stressed regime (right) for the S&P 500
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10 Managing market cycles and tail risk of volatility strategies

To generate alpha from selling volatility, the strategy need to model market cycles
and size positions accordingly

In good times:

• Exposure to index returns is removed by delta-hedging

• Residual risks of volatility premiums (gamma, vega) are idiosyncratic so for diversified port-
folio these are negligible

In bad times: Residual risks become common with risk-premiums spiking down

Volatility risk-premiums is interpreted as compensation to bear losses in bad market cycles

Market cycles are evident in empirical data - We can clearly spot the pattern of periods with pos-
itive drift and low volatility followed by periods of large negative returns and high volatility:

• Right: Time series of the S&P 500 index from Jan 2000

• Left: Time series of realized historical volatility of daily returns within each month
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Market cycles are statistically significant with fat tails of returns explained by regime
changes in realized volatility

Right: QQ-plot of monthly returns on the S&P 500 index

Left: QQ-plot of monthly returns normalized by the realized historic volatility of daily returns
within given month

Anderson-Darling test for normality of returns (H0 hypothesis)

Returns Normalized Returns

Reject H0 Yes No

p-value 0.0005 0.9515

We have strong presumption against normality of returns

However we cannot reject the hypothesis that volatility-normalized returns

Non-normality of returns can be explained by regimes in the volatility
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Kalman filter of Hamilton (1988) is applied to infer the probabilities of the stressed
regimes out-of-sample

Apply regime-switching model with normal and stressed market cycles

Model statistical inference:

1. Distributions of returns in normal and stressed regimes

2. In-sample inferred probability of stressed regime from observed data

3. Out-of-sample forecast for regime probabilities using Bayesian-type update with new market
data

50%

100%

Probability of Stressed Regime

Model with In-Sample Forecast

Model with Out-of-Sample Forecast

0%

50%

Ja
n
-0
0

Ja
n
-0
1

Ja
n
-0
2

Ja
n
-0
3

Ja
n
-0
4

Ja
n
-0
5

Ja
n
-0
6

Ja
n
-0
7

Ja
n
-0
8

Ja
n
-0
9

Ja
n
-1
0

Ja
n
-1
1

Ja
n
-1
2

Ja
n
-1
3

Ja
n
-1
4

Ja
n
-1
5

134



10.1 Examples of regime identification for optimal position sizing

Maximize the log of investment value to obtain the Kelly betting rule conditional on market
regimes:

Position In Normal Regime =
Expected Return In Normal Regime

Variance of Return In Normal Regime

Position In Stressed Regime =
Expected Return In Stressed Regime

Variance of Return In Stressed Regime

Expected Return In Normal Regime is positive so be long risk-premiums

Expected Return In Stressed Regime is negative so be short risk-premiums
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Volatility selling using 1m delta-hedged short Straddle on the S&P500 index - the
strategy with optimal position sizing outperforms

Daily re-hedging and weekly re-balancing

Transaction costs: 5bp per spot, 1% per implied vol

• Continuous: roll into new straddle every week

• Optimal: size position using out-of-sample forecast of regime probabilities:

No trading when forecast probability of stressed regimes is high

Continuous Optimal %

Trades # 519 173 33%

Sortino -0.39 0.98

Sharpe -0.34 0.74
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Volatility trading with 1m straddles on the S&P500 index - the strategy with optimal
long/short positions

Long/short am Straddle with daily re-hedging and weekly re-balancing

• Short Only: sell using out-of-sample forecast of regime probabilities

• Long-Short: buy and sell straddles using regime probabilities

Short Only Long-Short %

Trades # 173 218 26%

Sortino 0.98 1.86 90%

Sharpe 0.74 1.04 40%
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Skew selling using risk-reversals on the S&P500 index - the strategy with optimal
position sizing outperforms

1m delta-hedged short 97.5%-102.5% Risk-reversal with daily re-hedging and weekly re-balancing

• Continuous: roll into new risk-reversal every week

• Optimal: size position using out-of-sample forecast of regime probabilities

Continuous Optimal %

Trades # 519 173 33%

Sortino 0.34 2.09 ×6

Sharpe 0.29 1.56 ×5
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10.2 Conclusions

Fundamental ideas: connection to Minsky theory - in 1986, American economist Minsky
proposed the finantial stability theory:

1. In normal cycles of the economy, the corporate and household cash-flows rise above what is
needed to pay off debt

2. A speculative euphoria emerges, soon followed by short-fall between income and debt

3. Banks and lenders tighten credit supply, followed by declines in stock markets and economic
contraction

4. The Federal Reserve is a lender of last resort

”A fundamental characteristic of our economy is that the financial system swings
between robustness and fragility and these swings are an integral part of the process
that generates business cycles”

Risk-premiums can be interpreted as costs to protect against systemic shocks

The regime-switching model with state-dependent risk-premiums fits very well into
this picture

The model can help manage the exposure to market cycles

The same approach can be applied to another risk-premium strategis (credit, high
yield, etc)
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11 Using Volatility As A Systematic Investment Strategy

Motivation

Systematic

Volatility 

Investment

Strategy
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Allocation
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Investment

Strategy

Portfolio overlays

Yield Enhancing
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Volatility Risk
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Volatility Investing is Implemented by Trading in Options

Selling volatility:

• ”Profit” is the traded option premium derived from the implied volatility

• ”Loss” is the realized option premium (through delta-hedging or without it) derived
from the realized volatility

Realized Profit&Loss equals to the spread between implied and realized volatilities
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Empirical evidence: systematic short volatility strategies out-perform the bench-
mark with smaller risk
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Out-performance of volatility strategies is related to volatility risk-premium

Volatility Risk-premium = Implied volatility− Realized volatility

Figure:

Proxy Risk-premium = VIX at month start

− Realized volatility of S&P500 in this month
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Design of generic rule-based volatility indices I

1. Liquidity:

• No OTC

• Large cap ETFs and stocks with liquid option markets: SPY, QQQ, IWM, TLT, XLF,
AAPL, ...

2. Option Maturity:

• Short-dated options: 1 week, 1 month, 1 quarter

• More frequent re-balancing and capturing of volatility premium

• Volatility skew-premium is higher for short-dated options

• Position is held up to the expiry date: no account for vega risk

145



Typical Option strategies Strategies

Express returns and option log money-ness in terms of number of:

Standard deviation = Volatility×
√

Maturity Time

Straddle: short at-the-money call and put options
Straddle P&L is positive if implied deviation is higher than realized
Strangle: short out-of-the money call and put options with strikes of one implied standard
deviation away from spot price
Strangle premium picks up volatility, skew and tail premiums
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100%

% P&L on Straddle and 1-std Straddle

Straddle P&L

-700%

-500%

-3 -2 -1 0 1 2 3

Return as number of standard deviations

Strangle P&L
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Design of generic rule-based volatility indices II

1. Position sizing:

• Naked short: cash covers strike exposure at expiry

• Delta-hedged: leverage is determined

2. Delta-hedged or naked:

• Transaction costs for delta-hedge

• Computation of option delta
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Delta-Hedge reduces reduces realized returns in presence of Transaction Costs

Monthly rolls for S&P 500 index etf (SPY) from 2005 to 2016
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Increased exposure of delta-hedged position leads to higher tail risk
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Covered Calls

Hybrid version of short volatility strategy

Covered at-the-money call = Long Stock + Short Call

= Short Put

= 50% Long Stock + 50% Short Straddle

+ Implied vs realized volatility carry but long-term income is generated only if implied volatility
is higher than realized

+ 50% exposure to Stock price (near at-the-money)

+ 100% Dividends

- Cost of funding for long stock
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Generic volatility indices for S&P 500 index ETF (SPY) produce robust risk-adjusted
performance since 2005
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Systematic rule-based investment policy is crucial for long-term performance

High premiums are realized following periods of market corrections
To smoothed the cyclical volatility:

• Manage macro risk with a proper model

• Portfolio overlay with allocation to ”safe-haven” assets
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Return on Naked Short Straddle vs Return on Underlying for Broad Indices and
Sector ETFs

Outliers +: Financials (XLF), Utilities (XLU), Small Caps (IWM)
Outliers -: Nasdaq (QQQ), Discretionary (XLY), High Yield (HYG)
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Max DrawDown on Naked Short Straddle vs Max DrawDown on Underlying for
Broad Indices and Sector ETFs

Tail is risk is significantly and consistently overvalued
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Challenge on quantitative side is how to explain the persistence of the risk-premium

”Normal” volatility vs volatility of heavy-tailed distributions

Heavy-Tailed vs Normal Distributions with same 

volatility 

Student-t

Normal

-5 -4 -3 -2 -1 0 1 2 3 4 5

Return in number of standard deviations
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Fat tails can be explained by market cycles with regime changes in realized volatil-
ity

Left figure: QQ-plot of monthly returns on the S&P 500 from 1986
Right: QQ-plot of monthly volatility-normalized returns
Volatility risk-premium is derived from fat tails
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Quantitative model implies that the volatility risk-premium arises from:

• Fat tails of the statistical distribution of returns

• Investors’ risk-aversion

As driver for P&L:

Risk-premium = Implied risk− Realized risk

risk = volatility, skew etc

Implied Option Vol
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Volatility carry is the most significant factor for a volatility strategy

Short Option P&L = Implied Costs− Realized Costs

= Alpha

+ Beta To Asset× Realized Return

+ Beta To Vol Premium× Realized Vol Premium

Empirical regression with only significant coefficients for vol strategies on S&P500 ETF

Strategy Alpha S&P500 Vol Premium R2

Naked Straddle 0.26 31%

Naked Strangle 0.26 45%

Delta-Hedged Straddle (×2) 3% 0.22 52%

Delta-Hedged Strangle (×2) 4% 0.20 59%

Covered Call 0.54 0.09 88%
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Modeling expected volatility risk-premium

Necessary to deliver ”alpha”

Apply the expected risk-premium to size exposures
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Design of generic rule-based volatility indices on multi-assets

1. Allocation type for individual asset:

• Long only

• Option overlay

2. Reduce tail risk of strategy by being long ”safety” assets and selling options on ”risky” assets

3. Factor-based risk management for long position and option exposures:

• Static ”strategic” weight

• Risk-based weight
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Application I: bond portfolio yield-enhancing strategy in 10y treasury ETF (IEF)
with 50% strangle on S&P 500 index ETF (back-test from 2005)

1) 100% allocation to 10y Treasury ETF
2) cash + 100% S&P500 Strangle
3) 100% allocation to 10y Treasury ETF + 50% Strangle
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Application II: tactical re-balancing of strategic asset allocation with 50%-50% in
20y treasury bond ETF (TLT) and S&P500 index ETF (SPY) using strangles in
both ETFs

1) 50%-50% allocation
2) 50%-50% + Strangles
3) Risk-based allocation + Strangles
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Application III: full equity portfolio with risk-based allocation to 9 sector ETFs
(XLE, XLF,...) with Strangle overlays

1) S&P 500 index ETF (SPY) as the benchmark
2) Risk-based allocation to 9 sector ETFs
3) Risk-based allocation + Strangles overlay
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